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ABSTRACT

This dissertation identifies and characterizes the wake evolution, transitions, and interactions, as

well as evaluates the influence of geometrical and dynamic parameters on the wake of

wall-mounted prisms. The wake of wall-mounted prisms is highly three-dimensional, where

topology is partly dictated by the prism geometry, such as changing aspect-ratio

(height-to-width). However, the influence of depth-ratio (length-to-width) has not been well

characterized. Numerical simulations, based on direct techniques and Large Eddy Simulations,

were utilized to explore a wide range of parameters, including aspect-ratio of 0.25 − 1.5 and

depth-ratios of 0.016− 4 at Reynolds numbers of 5× 101 − 1× 104. The minimum depth-ratio

considered here accounts for the special case of a wall-mounted thin prism, similar to a flat plate.

First, a comprehensive classification of wake topology is presented as a multivariate function of

depth-ratio and Reynolds number. Evolution in the mean and instantaneous wake topologies is

first discussed at low Reynolds numbers (Re = 5× 101 − 5× 102), which establishes that there is

a unique asymmetric wake system formed behind wall-mounted prisms with sufficiently small

depth-ratios due to alternating shear-layer peel-off on either side of the body. This study also

reveals the formation of asymmetric hairpin-like vortices and the origins of wake asymmetry,

offering fresh insights into their dynamics. Further, interactions between secondary vortex

structures and leading-edge shear-layer are quantified. This dissertation, thereafter, uniquely

identifies the role of depth-ratio in the interactions between Kelvin-Helmholtz instability and

hairpin-like vortices at moderate Reynolds numbers (Re = 1 × 103 − 1 × 104). Understanding

these interactions provides critical insights into wake dynamics with increasing Reynolds

numbers. Finally, the study breaks new ground by identifying and quantifying the mechanism of

interactions between leading-edge shear layers and free-end vortices at moderate Reynolds

numbers, which lead to increased wake irregularity. Thus, the role of geometrical parameters in

dictating the wake topology and evolution are defined, which provides a comprehensive

understanding of the wake dynamics behind wall-mounted prisms.
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Chapter 1

INTRODUCTION

This dissertation numerically investigates the flow physics and fundamental wake dynamics

behind finite, wall-mounted prisms with different depth-ratios (or streamwise-length) at low to

moderate Reynolds numbers. Particularly, this work looks at vortex interaction mechanisms, and

wake evolution, due to both geometrical and flow dynamics. It aims to expand the fundamental

understanding of wake transition and interaction mechanisms, and flow instabilities associated

with free-end effects in wall-mounted prisms. The inherently unsteady nature of interactions in

the wake of prisms favors high fidelity numerical simulations, which provide deeper insight into

velocity and pressure fields over a wide spatial domain. As such, this dissertation utilizes

Computational Fluid Dynamics (CFD) as a tool to investigate the complex wake dynamics behind

finite prisms.

1.1 Overview

Since development of the boundary layer theory by Ludwig Prandtl in 1904 (Schlichting and

Gersten, 2016), there has been extensive research in the field of separated flows to

characterize (Bradshaw and Wong, 1972; Kim et al., 1980; Balachandar, 1990), model (Launder

and Spalding, 1983; Johnson and King, 1985; Wilcox et al., 1998; Menter et al., 2003) and

scale (Roache, 1982; Zagarola and Smits, 1998) various dynamic behaviors. The phenomenon of
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flow separation is commonly encountered in both internal (Simpson, 1989) and external

flows (Von Kármán, 1963; Hemmati et al., 2018a). It is a subject of particular relevance to

numerous practical engineering applications such as aerodynamics of aircraft wings (Ravindran,

1999; Gursul et al., 2014) and turbines (Lin et al., 1991; Corten, 2001), flow around

buildings (Paterson and Apelt, 1989; Baskaran and Kashef, 1996), flow over vehicles (Dominy,

1992; Hucho and Sovran, 1993; Katz, 2006; Choi et al., 2014), underwater locomotion (Verma

and Hemmati, 2020), pipe flows (Shah et al., 2012; Yamagata et al., 2014; Dutta et al., 2016;

Goswami and Hemmati, 2021a,b) and channel flows (Kim et al., 2001). Particularly, these

applications demand better understanding of pressure losses, added turbulence, heat and mass

transfer, and reduced rates of erosion and corrosion.

Dynamics of flow separation due to abrupt changes in surface conditions, such as the presence

of an obstacle, is particularly important in studies related to the flow over prisms. Turbulent flow

around wall-mounted prisms, or step change in the flow, represents a class of perturbed or

non-equilibrium flow, the behavior of which is typically complex (Smits et al., 1979; Wang et al.,

2006; Wang and Zhou, 2009; Smits et al., 2019a). Abrupt surface variations, especially in the

presence of a prism, creates a contraction in the flow, which leads to an overshoot in flow

characteristics, such as the formation of larger pressure gradients and higher Reynolds shear

stresses, in the vicinity of the prism. It also results in the formation and interactions of various

flow structures in the wake. Moreover, the flow past wall-mounted prisms constitutes a classic

problem in fluid mechanics. Contrary to aerodynamic bodies at low angles of attack, sharp-edged

bodies such as prisms and flat plates have an extended flow region of velocity deficit behind them

referred to as the wake (Von Kármán, 1963). The topology or organization of the wake is dictated

by both the transient and time-averaged (mean) nature of the vortex formations and their

interactions. The wake of wall-mounted prisms is typically complex and highly three-dimensional

due to various end-effects, including the free-end and junction flows (Wang and Zhou, 2009). The

flow response to wall-mounted obstacles have thus motivated extended research in the field of

separated flow, such as flow over prisms (Martinuzzi and Tropea, 1993; Hussein and Martinuzzi,
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1996; Wang et al., 2014; Wang and Lam, 2019a), and internal flow around surface-attached

prism (Smits et al., 1979; Durst and Wang, 1989; Yamagata et al., 2014; Smits et al., 2019a).

Turbulent shear flows, such as those encountered in the wake of prisms, are characterized by

the presence of spatially coherent, temporally evolving vortical motions called coherent

structures. These are responsible for the transport of momentum and energy in the flow (Jeong

and Hussain, 1995). As such, wake flows have been described and investigated in terms of

coherent vortical structures since the pioneering work of Von Karman (1911), Fage and Johansen

(1927), and Roshko (1961). Since then, a great deal of work has been done in the field of

identifying coherent structures (Jeong and Hussain, 1995), and qualitatively understanding then in

shear flows (Hussain, 1983, 1986). However, due to inherent subjectivity in the identification of

these structures, quantitative analysis and dynamical characterization of coherent structures in

turbulent flows remain a challenging task. Such wakes are characterized by the presence of

large-scale coherent structures (Roshko, 1961). Interactions between coherent structures are of

particular interest in the study of wakes, as they play a crucial role in determining the flow

characteristics and forces acting on the body. To this end, there have been many studies to

understand the flow past circular cylinders (Roshko, 1961; Williamson, 1988; Okamoto and

Sunabashiri, 1992; Williamson, 1996), rectangular prisms (Okajima, 1982; Lyn et al., 1995; Wang

and Zhou, 2009), flat disks (Marshall and Stanton, 1931; Berger et al., 1990; Cannon et al., 1993;

Zhong et al., 2011), and wall-mounted prisms (Sakamoto and Arie, 1983; Okamoto and

Sunabashiri, 1992; Martinuzzi and Tropea, 1993; Martinuzzi and Havel, 2000; Wang and Zhou,

2009).

Coherent vortical structures in the wake of prisms are significantly affected by flow

parameters, such as Reynolds number (Hwang and Yang, 2004; Zhang et al., 2017) and boundary

layer thickness (Hosseini et al., 2013; El Hassan et al., 2015), and geometrical parameters,

including aspect-ratio (height-to-width) (Wang et al., 2006; Wang and Zhou, 2009; Saha, 2013),

incident (yaw) angle (Zargar et al., 2021a), cross-sectional shape (Kindree et al., 2018), and

depth-ratio (length-to-width) (Rastan et al., 2021; Zargar et al., 2022b). Many studies have
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Figure 1.1: Schematics of large aspect-ratio (Left) and large depth-ratio (Right) prisms.

focused on the implications of aspect-ratio and Reynolds number in characterizing large-scale

vortical structures in the wake of wall-mounted finite prisms. Contrary to square prisms or

circular cylinders with large aspect-ratio, there have not been many studies exploring how

depth-ratio (length-to-width) of prisms dictate their wake behavior. In brief, increasing the

depth-ratio has resulted in changes of global flow features, such as lowering Strouhal number

(Stsh) and mean drag coefficient (Cd) (Mashhadi et al., 2021). The wake dynamics of large

depth-ratio prisms differed from that of finite wall-mounted square prisms due to flow

separation-reattachment on surfaces of the prism influencing the downstream wake (Wang and

Zhou, 2009). Joubert et al. (2015) investigated the wake of a wall-mounted finite prism with

aspect-ratio of 5 and depth-ratio of 2.63 at Reynolds number of 7.6×104. Their results indicated

that the flow reattaches on the prism top surface, and not on the sides, resulting in Kármán-type

vortex shedding. Wang and Lam (2019b) observed similar results experimentally, and further

reported that the prism depth-ratio did not influence its wake dynamics at high Reynolds number,

as long as flow reattachment did not occur on the prism side surfaces. Evolution of coherent

vortex structures with varying aspect-ratio confirmed the importance of geometrical parameters in

defining the wake topology (Wang and Zhou, 2009; Saha, 2013; Joubert et al., 2015; Rastan et al.,

2017). As such, further investigations are needed to understand the influence of geometry on the

wake dynamics behind wall-mounted prisms.
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This dissertation focuses on evaluating the influence of flow and geometric parameters on

wake mechanisms and vortex development behind wall-mounted prisms. Building on the

foundational work of Zargar et al. (2022b), which provided critical insights into wake dynamics

and vortex interactions for specific geometric configurations at low Reynolds number, this

research expands the scope to systematically investigate the effects of depth-ratio on the wake

development, evolution and interactions at low and moderate Reynolds numbers. In particular,

this study explores how such geometric variations influence vortex dynamics, wake structures,

and their interactions in the wake of finite prisms over a broader range of depth-ratios.

Furthermore, the corresponding dependence of depth-ratio on the aforementioned critical

parameters, including its role in modulating wake mechanisms and vortex development, remains

relatively unexplored, making this an important contribution to the field. Here, depth-ratio is

defined as the ratio of streamwise length (l) of the prism to its width (d), given by DR = l/d.

Aspect-ratio is defined as the ratio of height (h) to width (d) of the prism, given by AR = h/d.

Schematics of a prism with large aspect-ratio and a large depth-ratio is shown in Figure 1.1.

Depth-ratio in this study is varied from 1 to 4, and a finite aspect-ratio range is considered

between 0.25 and 1.5. A range of Reynolds numbers between 5×101 and 1×104 are considered

for this dissertation. This range corresponds to low and moderate Reynolds number regime,

which is associated with the onset of complex flow phenomena for wall-mounted long

prisms (Zargar et al., 2022b), including transition to turbulence in the wake which significantly

influences the wake dynamics and aerodynamic forces. Reynolds numbers between

5× 101 − 1.5× 103 are considered as low Reynolds number regime (Rastan et al., 2017; Zargar

et al., 2021b, 2022b), and Reynolds numbers between 1.5 × 103 − 1 × 104 are considered as

moderate Reynolds number regime (Sattari et al., 2012; Hosseini et al., 2013; Zargar et al.,

2022b). This distinction is made based on the flow characteristics and the onset of turbulence in

the wake of wall-mounted prisms (Martinuzzi, 2008; Hemmati et al., 2016; Zargar et al., 2022b).

Understanding these phenomena is crucial for applications involving wall-mounted prisms, as

they can significantly influence the wake dynamics and, consequently, the aerodynamic forces
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and structural response (Martinuzzi, 2008; Hemmati et al., 2016; Zargar et al., 2022b). As such it

is important to investigate and characterize the wake of wall-mounted prisms in this regime.

Wake of wall-mounted finite prisms is dominated by end-effects, especially an induced

downward-directed local velocity field, referred to as downwash flow (Sumner et al., 2017),

which makes the wake highly three-dimensional. Free-end downwash flow is induced by the tip

vortex, generated due to shear-layer separation at the free end of the prism. Vortex shedding

behind wall-mounted prisms is strongly dictated by the downwash flow and the interactions

between the tip vortex and the shear-layer roll-up at the leading edge of the prism (Saha, 2013;

Rastan et al., 2017). The intensity of interaction engenders the formation of large-scale coherent

structures, such as hairpin-like vortices, which play a crucial role in momentum transfer and

mixing processes in the wake (Wang and Zhou, 2009; Tenaud et al., 2016). As such, the

fundamental study of the influence of downwash flow and mixing in the wake of wall-mounted

prisms is crucial for engineering applications related to wind-loading in buildings (Sousa et al.,

2018) and pollutant dispersion from chimney stacks (Jiang and Yoshie, 2020). This dissertation

also studies a special case of flow past wall-mounted thin prism, which represents a case of very

small depth-ratio prism. Computationally, the flow past thin prism is investigated by using the

streamwise length of the smallest grid as the thickness of the plate. As such, a single grid point

across the plate length fixes the flow separation at the leading-edge of the prism without

possibility of flow reattachment on the surfaces. This results in a flow topology that is

significantly different from that of a finite, long prism (Chan et al., 2022).

1.2 Motivations and Objectives

Understanding the flow dynamics around wall-mounted prisms has been central to research

investigations in the past (Taneda, 1952; Schofield and Logan, 1990; Martinuzzi and Havel, 2000;

Farhadi and Rahnama, 2006; Wang and Zhou, 2009; Saha, 2013; Wang and Lam, 2019b; Yin

et al., 2020). Considerable effort has been made to understand various flow phenomena in this
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field, including flow separation (Dimaczek et al., 1989; Jovic and Driver, 1995), separation

bubbles (Kiya and Sasaki, 1983; Mollicone et al., 2017), reattachment of separated shear

layers (Bradshaw and Wong, 1972; Kim et al., 1980), and flow recovery (Smits et al., 1979;

Simpson, 1989). Additionally, extensive literature exists on the effects of aspect-ratio (Sakamoto

and Arie, 1983; Saha et al., 2000; Wang et al., 2006; Wang and Zhou, 2009; Saha, 2013) and

Reynolds number (Zhou et al., 2002; Yauwenas et al., 2019; Wang and Lam, 2019b) in

characterizing the large-scale vortical structures behind wall-mounted prisms. Previous studies on

the evolution of vortex structures with varying aspect-ratios underscore the significance of

geometrical parameters in defining wake topology. However, while extensive research has been

conducted on aspect-ratio, there is a notable gap in comprehensive studies addressing the

influence of depth-ratio on wake mechanisms and vortex development behind wall-mounted

prisms. The primary aim of this thesis is to identify and characterize the mechanisms of flow

transitions and vortex interactions, towards better understanding the wake evolution and

dynamics. To achieve this, the following objectives are set:

(A) First objective of this dissertation is to classify the mean and instantaneous wake

topology as a multivariate function of depth-ratio and Reynolds number. The large-scale

vortical structures in the wake of wall-mounted prisms are influenced by multiple critical

parameters (Yauwenas et al., 2019). For example, studies have demonstrated that time-averaged

(mean) wake topology of wall-mounted prisms transitions from quadrupole to dipole with

increasing Reynolds number (Zhang et al., 2017). Moreover, both aspect-ratio and depth-ratio

significantly influence the instantaneous wake topology (Wang and Zhou, 2009; Rastan et al.,

2021). Aspect-ratio also affects the onset of unsteady wake features, leading to symmetric

hairpin-like vortex shedding at low Reynolds numbers (Saha, 2013) and antisymmetric or

irregular unsteady shedding at moderate to high Reynolds numbers (Zhang et al., 2017; Rastan

et al., 2021; Zargar et al., 2022b). These findings highlight the multivariate impact of aspect-ratio

and Reynolds number on characterizing wake dynamics behind wall-mounted prisms. Recent

numerical studies by Mashhadi et al. (2021) confirmed this multivariate influence on vortex
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evolution in infinite-span prisms with varying depth-ratios. They emphasized the role of

shear-layer separation in shaping downstream wake topology, which is affected by variations in

both depth-ratio and Reynolds number. Thus, classifying the mean and instantaneous wake

topology as a multivariate function of depth-ratio and Reynolds number is essential for

understanding the wake dynamics behind wall-mounted prisms.

(B) Second objective of this thesis is to identify and characterize the mechanisms of

interaction between secondary vortex structures and leading-edge shear-layer roll-up at

low-to-moderate Reynolds numbers. Wake features are another critical aspect of the flow

around wall-mounted prisms. These features include secondary vortex structures that appear

alongside coherent structures, such as arch-type, Kármán-type, or hairpin-like vortex shedding.

Interactions between these secondary vortex structures and the shear layer at the leading edge of

the prism are particularly significant for understanding prism wakes, as they influence

downstream wake topology. Thus, identifying and characterizing the mechanisms of interaction

between secondary vortex structures and leading-edge shear-layer roll-up at low-to-moderate

Reynolds numbers is essential for understanding the wake dynamics behind wall-mounted prisms.

Specifically, unsteady wake features characterized by symmetric shedding of hairpin-like vortices

behind small aspect-ratio prisms (e.g., cubes) manifest at relatively low Reynolds

numbers (Diaz-Daniel et al., 2017b). However, varying the depth-ratio can delay or accelerate the

onset of unsteady and irregular wake features at low Reynolds numbers.

(C) Third objective of this thesis is to characterize the role of depth-ratio in driving

interactions between Kelvin-Helmholtz instability and hairpin-like vortices at

low-to-moderate Reynolds numbers. The formation and evolution of Kelvin-Helmholtz

instability (KHI) and its interactions with hairpin-like vortices around wall-mounted prisms

remain poorly understood. KHI rollers originate from the leading-edge shear layer and are

characterized by high-frequency signatures (Stkh). These rollers significantly influence the

pressure distribution on the prism surfaces and contribute to the formation of downstream wake
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structures, such as hairpin-like vortices (Tenaud et al., 2016). These hairpin-like structures are

recognized as large-scale coherent structures that play a crucial role in momentum transfer and

mixing processes, exhibiting comparatively low-frequency signatures (Stsh). Moreover,

characteristics of the interactions between Kelvin-Helmholtz instability and hairpin-like vortices

vary depending on the length of the prism (depth-ratio, DR, in the present study). In this context,

Reynolds number is critical in determining the intensity of these interactions. Lander et al. (2018)

proposed a scaling relationship (Stkh/Stsh = 0.18 × Re0.6) that equates the frequency of

Kelvin-Helmholtz instability to that of hairpin-like vortices. More recently, Kumahor and Tachie

(2023) demonstrated that these interactions are strongly influenced by the streamwise length (or

depth-ratio) of the infinite-span prism. These findings underscore the significance of geometric

factors in shaping the interactions between Kelvin-Helmholtz instability and hairpin-like vortices.

Thus, understanding the mechanisms of interactions between KHI and large-scale vortex

shedding at low-to-moderate Reynolds numbers forms a critical aspect of this study.

(D) Fourth objective of this thesis is to identify the mechanism of destabilization of the

leading-edge shear-layer at moderate Reynolds numbers. Influence of depth-ratio on global

unsteadiness and interactions between KHI and large-scale vortex shedding have been reported

for infinite-span suspended prisms (Zhang et al., 2023). However, these interactions significantly

differ compared to the case of wall-mounted prisms, mainly due to the infinite-span nature of the

prisms, where the wake is bounded by free-end effects (Wang and Zhou, 2009). Thus, in the

context of wall-mounted prisms, interactions between KHI and large-scale vortex shedding,

influenced by depth-ratio and free-end effects, have not been quantified in the past literature.

Specifically, this study investigates the possibility of enhanced momentum transport with

increasing depth-ratio as a precursor to wake transition. Further, this study aims to identify and

charazterize the mechanism of shear-layer destabilization, which leads to enhanced wake

irregularity at moderate Reynolds numbers. The implications of shear-layer flapping-like motion

are explored for long prism, and the mechanism of interactions are evaluated.
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1.3 Novelty

Novelty of this study is multifold and belongs to the field of wake dynamics and vortex interactions

behind wall-mounted prisms. They are summarized below:

1. Influence of Depth-ratio on wake topology: The influence of depth-ratio on wake topology

of wall-mounted prisms has not been comprehensively studied in the past literature. This study is

the first to classify the mean and instantaneous wake topology as a multivariate function of depth-

ratio and Reynolds number. Identification and characterization of the transition in the mean and

instantaneous wake topology and the associated mechanism for wall-mounted bluff bodies as a

multivariate function constitutes a novel contribution.

2. Secondary vortex interactions: Interactions between secondary vortex structures and leading-

edge shear-layer vortex shedding at low-to-moderate Reynolds numbers have not been studied in

the past literature. This study is the first to identify and characterize the mechanisms of interaction

between secondary vortex structures and leading-edge shear-layer at low-to-moderate Reynolds

numbers. Further, the role of secondary vortex structures in the formation of asymmetric hairpin-

like vortices, as well as identification of the origins of wake asymmetry at low Reynolds numbers,

is a novel contribution to the field of bluff-body wake.

3. Kelvin-Helmholtz instability interactions: Interactions between Kelvin-Helmholtz

instability and hairpin-like vortices around wall-mounted prisms have not been studied in the past

literature. This study is the first to characterize the role of depth-ratio in the interactions between

Kelvin-Helmholtz instability and hairpin-like vortices at low-to-moderate Reynolds numbers.

Understanding the wake transition mechanism, and vortex interactions influenced by end-effects

at a moderate Reynolds number constitutes a major contribution to the field of unsteady wakes.

4. Free-end vortex interactions: The mechanism of interactions between leading-edge

shear-layer and free-end vortex at moderate Reynolds numbers, which results in enhanced wake

irregularity, has not been quantified in the past literature. This study is the first to identify the
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mechanism of interactions between leading-edge shear-layer and free-end vortex at moderate

Reynolds numbers, which results in enhanced wake irregularity.

1.4 Structure of the thesis

This dissertation begins with a comprehensive review of the literature in Chapter 2. The

background review covers fundamental concepts of bluff body wake, including flow separation,

reattachment, and vortex shedding, as well as the influence of geometrical and flow parameters on

the wake dynamics of wall-mounted prisms and cylinders. The review also discusses the

state-of-the-art numerical and experimental studies on wake of prisms, focusing on the influence

of aspect-ratio and Reynolds number. The review highlights the gaps in the literature and

motivates the need for a detailed study on the influence of depth-ratio on wake dynamics behind

wall-mounted prisms. This is followed by a detailed description of the numerical simulation

setup, including the computational domain, boundary conditions, and numerical methods used in

this study, in Chapter 3. Verification and validation analysis of the numerical simulations are also

included, which provides sufficient confidence in the numerical setup used for assessing the

complex wake dynamics of wall-mounted prisms with varying depth-ratios.

Chapter 4 describes the wake of wall-mounted prisms with small aspect-ratio and changing

depth-ratios at low Reynolds numbers (5 × 101 − 5 × 102). The mechanism of asymmetric

shedding patterns is evaluated in this chapter, in order to identify the origins of wake asymmetry.

Furthermore, the role of secondary vortex structures in the formation of asymmetric hairpin-like

vortices is established here. Further, Chapter 5 characterizes the time-averaged (mean) wake of

wall-mounted prisms using the same parameter space as Chapter 4. The transitions in mean wake

topology are evaluated as a multivariate function of Reynolds number and depth-ratio. Moreover,

it identifies and characterizes the transition in the mean wake topology and the associated

mechanism for wall-mounted prisms as a multivariate function of depth-ratio and Reynolds

number. Collectively, Chapters 4 and 5 provide a comprehensive understanding of the wake
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dynamics behind wall-mounted prisms with varying depth-ratios at low Reynolds numbers and

address Objectives A and B of this thesis highlighted in Section 1.2.

Chapter 6 evaluates the influence of moderate range of Reynolds number (1×103−2.5×103)

on the wake dynamics behind wall-mounted prisms. This chapter focuses on the formation and

evolution of Kelvin-Helmholtz instability and its interactions with coherent wake structures, such

as hairpin-like vortices. Additionally, it explores how the depth-ratio influences surface pressure

distribution and the origin of pressure fluctuations, expanding the analysis into a regime where

turbulence transition plays a pivotal role in shaping the flow dynamics. This chapter addresses the

Objective C of this thesis highlighted in Section 1.2.

Chapter 7 presents a numerical study of the turbulence transition in the wake of wall-mounted

prisms at moderate Reynolds numbers (1× 103 − 5× 103). While earlier chapters demonstrated

the influence of depth-ratio on wake dynamics at lower Reynolds numbers, this chapter extends

that investigation into moderate Reynolds numbers, introducing the added complexity of

turbulence transition and intensified vortex interactions. This chapter further investigates the

mechanism of interactions between leading-edge shear-layer and free-end vortex at moderate

Reynolds numbers, which results in enhanced wake irregularity. The implications of shear-layer

flapping-like motion are explored for long prism, and the mechanism of interactions are

evaluated. Further, Chapter 8 investigates the mechanisms driving the destabilization of

leading-edge shear layer in the wake of wall-mounted long prisms, focusing on flow topology and

onset of Kelvin-Helmholtz instability. The focus of this chapter is on the onset of

Kelvin-Helmholtz instability, which amplifies flow irregularity and modulates spanwise vortex

structures, contributing to the destabilization process. Moreover, the mechanism of upstream

energy transfer from the secondary recirculation region to the leading-edge shear layer is studied

to address the influence of depth-ratio on vortex interactions at moderate Reynolds numbers.

Collectively, Chapters 7 and 8 provide a comprehensive understanding of the mechanisms of

interactions between leading-edge shear-layer and free-end vortices at moderate Reynolds

numbers, and address Objectives C and D of this thesis highlighted in Section 1.2.
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Chapter 9 summarizes the key findings of this dissertation and provides a comprehensive

discussion on the influence of depth-ratio on wake dynamics behind wall-mounted prisms. The

chapter also highlights the contributions of this study to the field of prism wake. Finally,

Chapter 10 outlines potential future research directions and opportunities for further investigation

in the field of prism wakes.
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Chapter 2

BACKGROUND

Separated flow is a fundamental phenomenon in fluid dynamics that occurs when the flow around

a body or surface detaches due to adverse pressure gradients or changes in geometry (Schlichting

and Gersten, 2016). The separation of flow is particularly common in flows around bluff bodies

such as circular cylinders, rectangular prisms, and flat plates, where the streamlined flow cannot

maintain attachment to the surface, resulting in large-scale wake formation behind the

body (Derakhshandeh and Alam, 2019). These wake regions are characterized by flow

deceleration and increased vorticity, leading to fluctuating flow patterns and the formation of

large-scale vortices. As the flow separates, it creates a low-pressure recirculation zone behind the

body, and in many cases, this recirculation is accompanied by alternating vortex shedding, known

as von Kármán vortex street (Von Kármán, 1963). The interaction of these vortices is a major

source of turbulence in wakes, contributing to energy dissipation, mixing, and generation of

unsteady forces on the body.

Turbulence plays a crucial role in both the development and evolution of separated flows and

wakes. When flow separates from the surface, it becomes highly unstable. This leads to the

breakdown of an orderly laminar flow to an irregular and unsteady flow (Pope, 2001). In the wake

region, turbulence is dominated by large-scale coherent structures, which are responsible for

much of the momentum transfer, mixing, and energy dissipation (More et al., 2015). Irregular
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vortex shedding from the sides of prisms, for example, is a key feature of turbulent wake

dynamics, and it significantly influences the pressure distribution and forces. Further, the

formation of separated flow regions marks the onset of complex flow structures and unsteady flow

behavior, directly influencing drag, lift, and the production of turbulence.

Since wakes are an amalgamation of such complexities, flow past prisms constitutes a classic

problem in fluid mechanics. Thus, it has been studied extensively over the past century. This

chapter provides a comprehensive literature review on bluff body wakes, focusing on the flow

past prisms, flat plates, and circular cylinders. The chapter is divided into three main sections:

Section 2.1 provides an overview of the flow around bluff bodies, discussing the wake topology

and key features of wakes. This is followed by a detailed discussion of the wake behind wall-

mounted prisms in Section 2.2, which includes a review of the mean and instantaneous wake

topology, such as vortex shedding and flow transition. This is followed by a brief review of the

wake behind suspended prisms and cylinders in Section 2.3, focusing on differences between wall-

mounted and suspended prisms. This is followed by a brief discussion of the wake behind flat

plates in Section 2.3.2, which represent a special case of a very thin prism. Section 2.3.3 provides

an overview of the wake behind circular cylinders, focusing on the flow topology and key features

of such wakes. Section 2.4 discusses approaches and tools for studying prism wakes, including

experimental and numerical techniques, and provides an overview of OpenFOAM, which is a

numerical tool utilized in this thesis to study the wake of prisms.

2.1 Flow around bluff bodies

Placing an object in an incoming flow creates a region of disturbed flow behind it. Extent of this

disturbance is strongly influenced by the shape of the object and flow conditions. For example, a

streamlined body with a small incidence angle, such as an airfoil or wing, generates a relatively

small wake region. In contrast, bluff bodies, like circular cylinders or rectangular prisms, produce

larger regions of disturbed flow characterized by complex and unsteady structures. At the leading-



Chapter 2. Background 16

edge of a sharp-edged bluff body, such as a prism, the flow slows down and forms a boundary layer

along its surfaces. This boundary layer eventually separates due to adverse pressure gradients or

geometric changes, resulting in free shear layers and what is refereed to as the wake (Zdravkovich,

1997).

Formation of large-scale coherent (organized) structures depends on the state of the flow, i.e.,

laminar, transitional, or turbulent. In laminar flows, the wake is characterized by regular and

ordered structures, while turbulent wakes are irregular and unsteady. Transition from laminar to

turbulent flow is a complex process that depends on Reynolds number, geometrical properties of

the body, and flow dynamics. Further, transition may occur in three key regions: the wake,

shear-layers bordering the wake, and boundary layers on the body (Schlichting and Gersten,

2016). Transition to turbulence depends on Reynolds number. However, other parameters such as

shape of the body and free-end effects (in case of finite bluff bodies) also affect the flow

transition (Zdravkovich, 1997). The wake transition occurs at low Reynolds numbers, in order of

a few hundreds (Williamson, 1996), and thus for most practical applications, the flow around

bluff bodies is turbulent. In case of sharp edged prisms, transition to turbulence in shear layers

occurs rapidly due to the flow separation at leading edges, and the wake becomes fully

turbulent (Martinuzzi, 2008). Large-scale coherent structures account for a significant portion of

the overall turbulent kinetic energy budget (Pope, 2001). These structures are coherent, meaning

they are organized, continuous regions of spatially correlated fluid motion. Further, this definition

implies that coherent structures are recurring, periodically or quasi-periodically, and their scales

are larger than the inertial sub-range (Kolmogorov micro scales). Energy transfer from large to

small (Kolmogorov) scales follows a cascade (Wilcox et al., 1998).

Two key features of prism wakes are flow separation at the leading-edges and the formation of

large-scale coherent structures. Organization of large-scale coherent structures behind the bluff

body is refereed to as wake topology. This topology depends on shape of the body and the flow

conditions. For example, wake of circular cylinder is characterized by the formation of von

Kármán vortex street, which consists of alternating vortices shed from either sides of the
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cylinder (Von Kármán, 1963). In contrast, wake of wall-mounted prisms are characterized by

complex interactions of free-end and junction vortices, which are responsible for the momentum

transfer and energy dissipation in the wake region (Wang et al., 2006). The wake topology is

significant because it directly influences drag, lift, and unsteady forces acting on the body. Further

it is used to classify different types of bluff bodies, based on their flow characteristics.

Another important feature of the flow past bluff bodies is the formation of recirculation region

or “dead zones” behind it. In these recirculation regions, the flow moves in the reverse direction

relative to the free-stream, and it is characterized by low velocity and high vorticity (Moreau,

2013). The formation of recirculation regions is important because it directly influences drag and

lift acting on the body. For example, drag is directly proportional to the size of the recirculation

region, and it is inversely proportional to the velocity of the flow in the recirculation

region (Zdravkovich, 1997). Further, large pressure drag is due to the formation of recirculation

regions and the induced pressure difference between the front (high pressure) and rear (low

pressure) parts of the body.

2.2 Wake of wall-mounted rectangular prisms

The wake of wall-mounted finite rectangular prisms is dominated by end effects, especially an

induced downwash flow (Sumner et al., 2017). Thus, the wake three-dimensionality becomes

more profound compared to those of infinite span (Mashhadi et al., 2021) and two-dimensional

prisms (Park et al., 2013). Moreover, they retain quasi periodic vortex shedding for small aspect-

ratio prisms and pyramids (Sakamoto and Arie, 1983; Martinuzzi and Tropea, 1993; Martinuzzi

and AbuOmar, 2003; Martinuzzi, 2008). The wake features for a wall-mounted finite prism can

be divided into three components: free-end downwash, wall-body junction upwash, and free shear

flow (Wang and Zhou, 2009). These end effects result in flow complexities and vortex shedding

patterns. Free-end downwash flow is induced by tip vortices generated due to the shear layer

separation at the free-end, while wall-body junction upwash flow is induced by the generation
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of counter-rotating base vortices at the wall-body junction (Wang et al., 2006). Induced upwash

and downwash effects entrain the flow into mid-span of the prism, resulting in the generation of

mid-span coherent structures. Thus, the wake becomes highly three-dimensional. Further, wall-

body junction induces a shear-layer roll-up in front of the body, which results in the formation of

a horseshoe vortex at the base that is generally associated with downward flow (Simpson, 2001).

Vortical structures in the wake of such bodies are significantly affected by flow parameters, such as

Reynolds number (Hwang and Yang, 2004; Zhang et al., 2017), boundary layer thickness (Hosseini

et al., 2013; El Hassan et al., 2015), and geometrical parameters, including aspect-ratio (height-to-

width) (Wang et al., 2006; Wang and Zhou, 2009; Saha, 2013), incident (yaw) angle (Zargar et al.,

2021a), cross-sectional shape (Kindree et al., 2018), and depth-ratio (length-to-width) (Rastan

et al., 2021; Zargar et al., 2022b).

Abundance of literature exists that focus on the effects of aspect-ratio (Sakamoto and Arie,

1983; Saha et al., 2000; Wang et al., 2006; Wang and Zhou, 2009; Saha, 2013; McClean and

Sumner, 2014) and Reynolds number (Zhou et al., 2002; Yauwenas et al., 2019; Wang and Lam,

2019b) on characterizing large scale vortical structures behind wall-mounted finite prisms. Several

studies on wall-mounted, finite prisms have established that changing Reynolds number does not

alter the presence of main features of the wake topology, such as a horseshoe vortex, tip and base

vortices, and mid-span vortex shedding (Saha et al., 2000; Krajnović and Davidson, 2005; Zhang

et al., 2017), while they do alter the wake dynamics associated with such structures. To this effect,

Saha et al. (2000) numerically showed that the wake of a wall-mounted finite prism at Reynolds

number of 1×102 has negligible change compared to the wake (coherent topological components)

of a two-dimensional prism at Re = 2.14× 104 (Lyn et al., 1995) and Re = 1.4× 105 (Cantwell

and Coles, 1983).

Vortex shedding is suppressed at lower Reynolds numbers or smaller prism aspect-ratios. For

example Zargar et al. (2021b) reported this suppression at Reynolds number of 2.5 × 102 for

aspect-ratio of 1.2, which corroborated with the results of Saha (2013) for a prism with

aspect-ratio of 2 at Reynolds number of 2.5×102. Further, mid-span coherent structures, as well
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as the cross-sectional wake topology, vary with changes in the prism aspect-ratio. Experimental

study of the flow past finite circular and square wall-mounted prisms by Sakamoto and Arie

(1983) in a turbulent boundary layer revealed two types of wake structures for aspect-ratios of 1

to 8. These structures were the Kármán-type and arch-type structures, which were strongly

influenced by the aspect-ratio. To this effect, the arch-type structures only appeared at aspect-ratio

below 2. This hints at a threshold in aspect-ratio, below which the downwash flow in the near

wake region suppressed the periodic and asymmetric Kármán type vortex shedding. This process

was restored for aspect-ratios above this threshold. Evolution of the vortex shedding by

decreasing aspect-ratio confirmed that geometrical parameters are critical in defining the wake

topology. Later, Wang and Zhou (2009) modified the earlier model of Wang et al. (2006),

revealing the presence of a single arch-type structure in the near-wake region. They argued that

the spanwise base and tip vortices are inherently connected to form an arch-type structure.

Further, Wang and Zhou (2009) reported that arch-type structures may shed into the wake in the

form of hairpin-like vortices. These structures were unique to large aspect-ratios. However, in

case of small aspect-ratio prisms (e.g., a cube), Hwang and Yang (2004), Yakhot et al. (2006), and

Diaz-Daniel et al. (2017b) reported only hairpin-like vortices in the wake, which are usually

formed at a particular range of Reynolds numbers (Re > 5× 102). The formation of hairpin-like

structures were attributed to destabilization of the shear-layer that had separated from the top

leading edge of the prism. Despite these efforts, there has not been a comprehensive study of the

cylinder depth-ratio on wake mechanisms and vortex development.

Contrary to square or circular prisms with a large aspect-ratio, there have not been many studies

on how the prism depth-ratio influences the wake. Majority of the research efforts in this area

have focused on infinite span prisms or flat plates, which is a special case of a very thin infinite-

span prism (Narasimhamurthy and Andersson, 2009; Ying et al., 2012; Ranjan and Dewan, 2016;

Hemmati et al., 2018b). Variations in depth-ratio resulted in changes in the global aerodynamic

features, such as the mean drag coefficient (Cd) and shedding frequency (Stsh) (Mashhadi et al.,

2021). Increasing the prism depth-ratio led to a lower Stsh and Cd . The wake dynamics of large
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depth-ratio prisms differs from that of finite square prism due to the flow reattachment-separation

on the prism free-surfaces that influence the wake (Wang and Zhou, 2009). Below, we look at a

handful of studies focused on the effect of depth-ratio on the wake of rectangular prisms.

One of the first prominent studies on effects of depth-ratio was performed by Zargar et al.

(2021b), numerically analyzing the wake of small aspect-ratio prisms (∼ 1.2). They reported a

steady wake between Reynolds numbers of 5× 101 and 2.5× 102 across a range of depth-ratios

between 0.83 and 3. Further, Zargar et al. (2021b) observed dominant downwash flow with

increasing depth-ratio, which resulted in dipole-type mean wake topology for large depth-ratio

prisms. Rastan et al. (2021) performed a similar investigation, numerically and experimentally, on

a prism with aspect-ratio 7 and varying depth-ratios (1 − 4) at Reynolds number of 1.2× 104.

Their results indicated that the flow reattachment on top surfaces occurs earlier than side surfaces

(DR ≥ 3). Further, increasing depth-ratio suppressed the spanwise Kármán-type vortex shedding

and reduced the interaction of spanwise vortex structures with the downwash flow. Rastan et al.

(2021) further noted that increasing depth-ratio led to a transition in the mean wake topology

from dipole-type to no-pole type wakes, indicating weakened downwash flow that increases with

depth-ratio. The differences observed in the wake evolution due to depth-ratio between Rastan

et al. (2021) and Zargar et al. (2021b) stems from the high aspect-ratio of the former study, where

the upwash flow remains prominent (Wang and Zhou, 2009).

An essential aspect of the flow around rectangular prisms is the separation-reattachment

phenomenon. Flow separation-reattachment influenced by the depth-ratio by changing the flow

reattachment process on the top and side surfaces of the prism (Rastan et al., 2021). Flow

reattachment is attributed to the downwash flow due to the tip vortex, which suppresses the

separation of the shear layer on the top surface. This downwash flow is more pronounced for

prisms with larger depth-ratios, leading to flow reattachment on the top surface. Joubert et al.

(2015) analyzed the wake of a wall-mounted finite prism with depth-ratio of 2.63 and aspect-ratio

5 at Reynolds number of 7.6×104. Their results revealed that after the initial flow separation, the

shear layer reattachment only occurred for the top surface and not for the side surfaces. Wang and
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Lam (2019b) observed similar results, and reported that depth-ratio does not influence the mean

wake structures as long as the flow separation and reattachment does not occur on the side

surfaces. Moreover, sharp-edged flow separation generates turbulence due to the adverse pressure

gradient at the leading-edge. Recovery of pressure persists till the flow reattachment, which

enhances unsteady fluctuations in this region (Awasthi et al., 2014). As such, reattachment of the

flow significantly influences the flow dynamics, specifically the pressure distribution on prism

surfaces. Small and large scale vortices, especially hairpin-like vortices formed in the

reattachment region, influences large pressure fluctuations near the prism (Saathoff and

Melbourne, 1997). Rastan et al. (2021) observed similar pressure effects in the wake due to the

downwash flow induced by the tip vortex, which is a critical factor influencing pressure

fluctuations and the base pressure along the prism length. Since pressure fluctuation correlates

with velocity fluctuations via Poisson’s equation, investigating pressure fluctuations can offer

novel insights into flow dynamics around wall-mounted prisms, particularly highlighting

interactions among different flow structures. Furthermore, pressure fluctuations can be associated

with interactions between Kelvin-Helmholtz and hairpin-like vortices, which are influenced by

the prism depth-ratio.

Large-scale vortical structures in the wake of wall-mounted prisms are affected by more than

one critical parameter (Yauwenas et al., 2019). Zhang et al. (2017) reported that the mean wake

topology changes from quadrupole to dipole wake with increasing Reynolds number from 5×101

to 1× 103 for a wall-mounted square prism with aspect-ratio 4. Zhang et al. (2017) observed

that increasing the Reynolds number enhanced unsteady wake features, resulting in symmetric

hairpin-like vortex shedding at Re = 1.5× 102 − 2.5× 102 and antisymmetric shedding at Re =

5× 102 − 1× 103. Rastan et al. (2017) observed similar results for a prism with aspect-ratio of

7, where unsteady wake features were initiated at lower ranges of Reynolds number. For the

case of small aspect-ratio prism (i.e. a cube), Diaz-Daniel et al. (2017b) reported the initiation

of unsteady wake at Reynolds number of 5× 102. These results indicate a multivariate influence

of both aspect-ratio and Reynolds number in characterizing the wake dynamics of wall-mounted
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prisms. Recent numerical study of Mashhadi et al. (2021) confirmed such multivariate influence

on the vortex evolution for infinite-span prisms with changing depth-ratios. Mashhadi et al. (2021)

further scrutinized the role of shear-layer separation in dictating the downstream wake topology,

which results from varying depth-ratio and Reynolds number.

2.2.1 Mean wake topology

Topology of three-dimensional separation patterns in the wake of wall-mounted prisms can be

characterized through the surface shear-stress distribution. The basis of analyzing wall shear-

stress topology was first given by Lighthill (1963), who showed that the shear-stress distribution

on surfaces are orthogonal to vorticity, and thus provide a direct measure of the orientation of

vorticity in the wake. Further, wall shear-stress distribution can identify the point of flow separation

and reattachment on the body. As such, examining the wall shear-stress reveals critical points such

as nodes, foci and saddles, which are associated with the presence of vortices in the wake (Zargar

et al., 2021b). This is based on the critical point theory (Perry and Fairlie, 1975), providing a

framework to understand the wake topology. Thus, there are studies that have proposed different

vortex skeleton models of the mean wake of prisms (Martinuzzi and Tropea, 1993; Zargar et al.,

2022b). In brief, the mean wake topology of wall-mounted prisms consist of various streamwise

vortices, e.g., tip, base and mid-span vortices, and shear-layer roll-up in front of the prism due to

wall-body junction effects, forming the horseshoe vortex (Simpson, 1989).

Complexity of the flow around wall-mounted prisms stems from the influence of ‘junction’

and ‘free-end’ flows (Wang and Zhou, 2009). Junction flow refers to the formation of base

vortices from the wall-body junction due to the interaction of the boundary-layer with the body,

while free-end flow refers to the formation of tip vortices from the prism free-end due to

adverse-pressure gradients. These typical tip and base vortices appear in time-averaged (mean)

flow topology as counter-rotating streamwise vortex pairs. Moreover, tip vortex induces a

downwash flow and base vortex induces an upwash flow, as showed in Figure 2.1. This entrains

the flow into the mid-span of the prism, resulting in the formation of mid-span coherent
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Figure 2.1: Quadrupole (Left) and Dipole (Right) wake topologies in the wake of wall-mounted
prisms, presented using streamwise vorticity distribution above and below the critical aspect-ratio.

structures. Based on the number of streamwise vortex pairs appearing in the wake, past studies

have classified the mean-wake topology into Dipole, Quardupole, Multipole and No-Pole

wakes (Zhang et al., 2017). Dipole type wake consists of a tip vortex pair, while Quadrupole-type

wake has both counter-rotating tip and base vortices. Further, past literature scrutinized that the

evolution in mean-wake topology is affected by both flow dynamics, i.e., Reynolds number and

boundary-layer thickness, and geometrical features, i.e., aspect-ratio (height-to-width),

depth-ratio (length-to-width) and cross-sectional shape of the body (Porteous et al., 2014;

Derakhshandeh and Alam, 2019). While there are studies that have identified the evolution in

mean wake topology based on a single parameter, the multivariate evolution of the wake has not

been explored thoroughly.

The evolution of mean wake topology behind a wall-mounted prism has been mainly studied

in the literature in terms of changing aspect-ratio (Sumner et al., 2004; Sumner and Heseltine,

2008; Yauwenas et al., 2019) and Reynolds numbers (Zhang et al., 2017; Rastan et al., 2017;

Diaz-Daniel et al., 2017b). Sumner et al. (2004) experimentally studied the mean wake of a wall-

mounted circular prism with changing aspect-ratios between 3 and 9. They observed that the

mean-wake topology changes from Dipole-type at aspect-ratio of 3 to Quadrupole-type at aspect-
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ratio of 5. This study was further complemented by Sumner and Heseltine (2008), who reported

that the tip vortex dominated the wake of small aspect-ratio prisms. It was also observed that

increasing aspect-ratio reduces the strength of the tip vortex, while increasing that of the base

vortex. Yauwenas et al. (2019) reported similar distinction with increasing aspect-ratio for sharp-

edged prisms. Furthermore, Hosseini et al. (2013) and Yauwenas et al. (2019) examined the role

of both aspect-ratio and boundary-layer thickness in determining Dipole/Quadrupole wakes and

noted discrepancies compared to Wang and Zhou (2009) and Bourgeois et al. (2011). Wang and

Zhou (2009) observed the evolution from Dipole to Quadrupole wakes at aspect-ratio of 5, contrary

to Yauwenas et al. (2019) who reported them at 6−10. Since both studies had a similar Reynolds

number and boundary layer thickness, there may be other factors affecting the wake evolution. This

hints at the need to characterize the mean wake topology for small aspect-ratio prisms, considering

that there remains a notable gap concerning how changing depth-ratios (normalized length) impacts

the wake.

For a particular aspect-ratio, the mean wake topology was determined based on changing

Reynolds number. Zhang et al. (2017) numerically studied the wake of wall-mounted square

prism of aspect-ratio 4 with varying Reynolds numbers (5× 101 − 1× 103). Zhang et al. (2017)

noted an evolution from Quadrupole-type wake at Re = 5× 101 − 1× 102 to a Dipole-type wake

at Re = 5 × 102 − 1 × 103. They further reported six-vortex-type Multipole wake as an

Intermediate topology at Re = 1.5× 102 − 2.5× 102. Rastan et al. (2017) numerically reported

similar observations for a prism with aspect-ratio 7, further noting the Dipole type wake

appearing at lower Reynolds number of 8.5× 101. Such early evolution in case of Rastan et al.

(2017) was attributed to stronger tip vortex with increasing aspect-ratio at low Reynolds numbers.

In case of small aspect-ratio prisms, such as a cube, Diaz-Daniel et al. (2017b) reported the

dominant effects of tip vortex in determining downstream wake characteristics. In case of a small

aspect-ratio prism, a strong downwash flow (induced by the tip vortex) resulted in a Dipole-type

wake. Changing the depth-ratio (length) of the prism had a significant effect on the free-end

vortices (Rastan et al., 2021; Zargar et al., 2022a). Rastan et al. (2021) recently showed that for a
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prism with aspect-ratio 7, increasing the depth-ratios in the range of 1− 4 led to the suppression

of tip vortex and a no-pole type wake. For small aspect-ratio prisms, Zargar et al. (2021b) showed

that increasing the depth-ratio from 0.016 to 1 led to an enhanced downwash flow. Further, a

Quadrupole type wake at depth-ratio of 0.016 changed to Dipole-type wake at depth-ratio of 1.

For larger depth-ratios (∼ 4), Dipole-type wake prolonged until Re ≃ 6.25× 102 (Zargar et al.,

2022b). Based on these findings, one can hypothesize that the tip vortex, and its induced

downwash flow, play an important role in determining the mean wake topology, especially for

small aspect-ratio prisms.

2.2.2 Unsteady wake topology

The three-dimensional wake behind wall-mounted prisms is mainly attributed to the entrainment

of flow into the prism mid-span by the induced upwash and downwash flows (Wang and Zhou,

2009). As such, mid-span coherent structures are responsible for the formation of large-scale

vortices and alternating vortex shedding in the wake region, and are influenced by the prism aspect-

ratio and depth-ratio. Sakamoto and Arie (1983) discussed the influence of increasing aspect-ratio

between 1 and 8 on the coherent and mean wake features behind wall-mounted circular cylinders

and square prisms. Kármán-type or hairpin-like structures in the wake were strongly influenced by

the prism aspect-ratio. For example, hairpin-like structures only appeared at aspect-ratios below

2. Thus, a threshold aspect-ratio exists, below which the intense downwash flow suppresses the

asymmetric, periodic Kármán-type vortex shedding. From the limited studies on large depth-ratio

prisms, it is evident that depth-ratio affects the unsteady wake topology. Joubert et al. (2015)

studies the wake of a wall-mounted finite prism with an aspect-ratio of 5 and a depth-ratio of 2.63

at Reynolds number of 7.6×104. The flow reattached on the top surface of the prism, but not on the

sides, leading to Kármán-type vortex shedding. Similarly, Wang and Lam (2019b) experimentally

observed similar results and concluded that depth-ratio did not significantly affect the overall wake

dynamics at high Reynolds numbers, if the flow does not reattach on the prism side surfaces.
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Depth-ratio also affects the onset of unsteady wake evolution. For example, numerical study of

Zargar et al. (2021b) revealed that the wake of a low aspect-ratio (AR = 1.2) prism remains steady

at Reynolds numbers of 5×101 to 2.5×102 for both small and large depth-ratios (i.e., 0.83−3).

Zargar et al. (2022b) further demonstrated that increasing Reynolds number above 7.5× 102 for

a large depth-ratio prism (DR = 5) leads to an irregular (unstable) unsteady regime, resembling

a transitional state. Irregular shedding resulted in flow reattachment and subsequent detachment

from the prism surfaces. Rastan et al. (2021) reported similar observations at Reynolds number

of 1.2×104. These results showed that increasing the prism depth-ratio lead to diminished vortex

shedding, which was attributed to the suppressed interactions between the separating shear-layer

and the wake. This suppression was linked to strengthening of the downwash flow.

Quasi-periodic vortex shedding behind wall-mounted prisms is a common feature for small

aspect-ratio prisms (Sakamoto and Arie, 1983; Martinuzzi and Tropea, 1993; Martinuzzi and

AbuOmar, 2003; Martinuzzi, 2008). Previous studies, such as by Sakamoto and Arie (1983) and

Hosseini et al. (2013), have shown the effect of aspect-ratio and boundary-layer thickness on the

quasi-periodic vortex shedding. The boundary-layer thickness changes momentum of the

approaching flow and affects the intensity and size of the base vortex structures (horseshoe and

junction vortices), which in turn modifies the interactions with shed vortices from the prism top

and side surfaces (Bourgeois et al., 2011). Moreover, previous studies have similarly described

the wake of wall-mounted prisms as symmetric and/or anti-symmetric under the influence of a

very thin boundary-layer. For instance, Okamoto and Sunabashiri (1992) noted the possibility of

symmetric shedding at high Reynolds numbers and very thin boundary layer. In such an

arrangement, two symmetric vortices would form in the prism base region, shed simultaneously

and travel downstream together. However, no direct evidence of symmetric shedding have been

found at high Reynolds numbers (Sattari et al., 2012).

Sattari et al. (2012) and Bourgeois et al. (2011) reported the existence of full-loop and

half-loop vortex structures in the wake wall-mounted square prisms with increasing aspect-ratios.

Specifically, instantaneous wake topology for aspect-ratio of 4 were presented in the form of half
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loops, whereas full-loop structures were observed for aspect-ratio of 8. These structures were

attributed to the interactions between tip and base vortices, and flow reattachment on the prism

surfaces. Vortex structures were also influenced by the boundary-layer thickness, which affected

the strength of base vortices and the interactions with tip vortices. Briefly, half-loop structures

were identified by an arch-type vortex consisting of a principal vortex core and a streamwise

connector strand as described by Bourgeois et al. (2011). Full-loop structures were previously

attributed to the interactions of tip and base vortices, which resulted in the formation of a single

large-scale vortex in the wake (Wang and Zhou, 2009).

It is well-documented that separated shear-layers have the capacity to reattach over the side

and top surfaces of the prism at elevated Reynolds numbers (Re > 1× 103), provided there is a

significant increase in depth-ratio (Rastan et al., 2021). The entailed enhancement of the

downwash flow suppresses the wake unsteadiness in long prisms (Rastan et al., 2021).

Meanwhile, aspect-ratio plays a role in intensifying the upwash flow and contributing to the

overall wake unsteadiness (Saha, 2013). Thus, enhancement of the unsteadiness, or onset of an

irregular unsteady flow topology in the wake of wall-mounted prisms, can be achieved by either

increasing the prism aspect-ratio or reducing its depth-ratio. This heightened wake unsteadiness

suggests that abrupt changes in geometry may be associated with the transition to turbulence.

The separation-reattachment phenomenon is an essential aspect of the flow around rectangular

prisms. Influenced by the depth-ratio, it is characterized by the reattachment of the flow on the

top and side surfaces of the prism (Rastan et al., 2021). Flow reattachment is attributed to the

downwash flow generated by the tip vortex, which suppresses separation of the shear layer on the

top surface. This downwash flow is more pronounced for prisms with larger depth-ratios, leading

to flow reattachment on the top surface. Moreover, sharp-edged flow separation generates

unsteady fluctuations as part of the adverse pressure gradient generated at the leading-edge.

Recovery of pressure persists till the flow reattachment, which enhances unsteady fluctuations in

this region (Awasthi et al., 2014). As such, reattachment of the flow significantly influences the

flow dynamics, specifically the pressure distribution on prism surfaces. Small and large scale
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vortices, especially hairpin-like vortices formed in the reattachment region, influence large

pressure fluctuations near the prism (Saathoff and Melbourne, 1997). Rastan et al. (2021)

observed similar pressure effects in the wake due to the downwash flow induced by the tip vortex,

which is a critical factor influencing pressure fluctuations and base pressure along the prism

length. Since pressure fluctuation correlates with velocity fluctuations via Poisson’s equation,

investigating pressure fluctuations can offer novel insights into flow dynamics around

wall-mounted prisms, particularly highlighting interactions among different flow structures.

2.2.3 Wake features and instabilities

Wake features and instabilities become an important aspect of the flow around wall-mounted

prisms. These features include secondary vortex structures appearing in the wake alongside the

coherent structures, such as the arch-type, Kármán-type, or hairpin-like vortex shedding.

Diaz-Daniel et al. (2017b) observed secondary vortex structures in the wake of wall mounted

prisms at Re ≥ 6 × 102, placed symmetrically alongside the primary vortex structures. They

attributed such structures to secondary interactions by the vortical motion of horseshoe vortex

legs. Further, three-dimensional turbulent effects, at higher Reynolds number, cause stronger

interactions between vortices. This results in higher number of secondary structures that lose

streamwise coherence in close vicinity of the prism. Khan et al. (2020a) numerically studied the

laminar vortex shedding regime of flow around a suspended cube to examine the

three-dimensional vortex shedding mechanism and understand temporal evolution of the wake.

They observed hairpin-like shedding, which appeared asymmetric in normal streamwise plane

and symmetric in the orthogonal streamwise plane. They also observed secondary structures

forming between two shedding hairpins. Secondary structures formed limbs, protruded from the

first hairpin-like structure, which connected the two primary hairpins. Khan et al. (2020b) noted

similar wake structures at moderate Reynolds numbers.

In case of flow around wall-mounted finite prisms, no clear consensus was identified in the

terminology of secondary vortex structures and their interactions. Zhang et al. (2017) identified
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formation of a secondary tip vortex from top surface of the prism leading edge, refereed to as

tornado-like tip vortices due to their spiraling rotations. These observations were consistent with

the findings of Rastan et al. (2021), who reported that secondary tip vortices vanished in the

vicinity of the prism. Both these studies discussed secondary vortex structures in terms of

time-averaged streamwise vortices observed in the wake. Insights into the interactions of

secondary vortex structures with the shedding coherent structures remains unexplored in

literature.

Near-wake low- or high-frequency instability processes are other important aspect of the wake

of low aspect-ratio wall mounted prisms (Morton et al., 2018; Kindree et al., 2018). They are

harmonics of the dominant shedding frequency in the near-wake. The analysis of such complex

flow field and inherent wake instabilities in the past literature focused mainly on Floquet

analysis (Williamson, 1988; Barkley and Henderson, 1996) and model reduction methods (Akhtar

et al., 2009; Rowley et al., 2009; Schmid, 2010; Khalid et al., 2020). In post-processing, model

reduction methods such as Proper Orthogonal Decomposition, or POD (Morton et al., 2018;

Kindree et al., 2018), and Dynamic Mode Decomposition, or DMD (Rowley et al., 2009; Schmid,

2010), are useful techniques to investigate complex flow phenomenon. Moreover, discrete Fourier

transform based methods like Fourier Averaged Navier-Stokes (FANS) (Freeman et al., 2024)

provide a framework to obtain direct insights into the dynamics of complex coherent wake

interactions. Using POD, Morton et al. (2018) established that the near-wake of a wall-mounted

finite circular prism consists of a vortex shedding instability centered at the shedding Strouhal

number (Stsh) as well as low-frequency signatures centered at Stsh/2 and Stsh/4. They further

observed that such low-frequency signatures are independent of Reynolds number, defined based

on d over the range of 3×102 −1.18×104, but dependent on the boundary layer state, and hence

Reynolds number based on boundary layer thickness. Morton et al. (2018) further proposed that

such low-frequency instabilities are only observed in circular cross-section prisms with

aspect-ratios smaller than 4. Further, Kindree et al. (2018) expanded on this study by

investigating the low-frequency periodicity of both circular and square cross section prisms of
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aspect-ratio 4 positioned inside a thin laminar boundary layer. This study reported the

low-frequency instability in sharp-edged prisms, i.e.− square cross-section. Hence, reducing the

aspect-ratio of wall-mounted prisms highly influences the wake structure by means of the

free-end instabilities. To this end, it is important to explore how the larger depth-ratio of a prism

can impact its free-end instabilities, and thus the wake topology and dynamics.

An important free shear-layer instability, most commonly encountered in the flow around

prisms, is Kelvin-Helmholtz instability. Studies on infinite-span rectangular prisms show that

flow separates at the leading edge and forms a separated shear-layer at Reynolds number above

1.5×102, which rolls up into a train of small-scale vortices (Moore et al., 2019a). These result in

Kelvin-Helmholtz Instability (KHI) of the shear layer and they are characterized by

high-frequency signatures (Stkh). Kelvin-Helmholtz instability significantly impacts pressure

distribution on the prism surfaces and contributes to the formation of downstream structures, such

as hairpin-like vortices (Tenaud et al., 2016). These hairpin-like structures are considered

large-scale coherent structures and play a crucial role in the momentum transfer and mixing

processes. Moreover, these hairpin-like vortices manifest at comparatively low frequency (Stsh).

Depending on the length of the prism (DR in the present study), interactions between

Kelvin-Helmholtz and hairpin-like vortices exhibit different characteristics. In this realm,

Reynolds number plays a critical role in determining the intensity of these interactions, such that

Lander et al. (2018) (Lander et al., 2018) proposed a scaling (Stkh/Stsh = 0.18×Re0.6) that equate

the frequency of Kelvin-Helmholtz instability to that of hairpin-like vortices. Later, (Kumahor

and Tachie, 2023) showed that these interactions strongly depend on the streamwise length of the

infinite-span prism. These findings emphasize the importance of geometry in shaping the

interactions between Kelvin-Helmholtz and hairpin-like vortices.

Influence of depth-ratio on global unsteadiness and interactions between Kelvin-Helmholtz

instability (KHI) and large-scale vortex shedding have been reported for infinite-span suspended

prisms (Zhang et al., 2023). However, these interactions significantly differ compared to the case

of wall-mounted prisms, mainly due to the infinite-span nature of the prisms, where the wake is
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bounded by free-end effects (Wang and Zhou, 2009). Thus, in the context of wall-mounted prisms,

interactions between KHI and large-scale vortex shedding, influenced by depth-ratio and free-end

effects, have not been quantified in the past literature.

2.3 Wake of suspended bluff bodies

Suspended prisms are fully immersed in the flow without contact with any walls or surfaces

contrary to wall-mounted prisms. This allows the flow to develop symmetrically around the entire

body, both above and below, without the interference of boundary layer effects from a nearby

surface. The flow over such suspended bodies are separated into two categories based on the

cross-section shape (Derakhshandeh and Alam, 2019): (i) shapes of continuous and finite

curvature such as circular or elliptical cylinders, and (ii) sharp edged structures of infinite

curvature such as square or rectangular prisms. These differences are primarily based on the

nature of boundary-layer separation. For instance, in case of circular and elliptical cylinders, the

flow smoothly separates from the surface, leading to the formation of symmetric vortices and the

well-known von Kármán vortex street (Taneda, 1952). Smooth curvature results in a more gradual

boundary layer separation, which contributes to less severe pressure gradients and more organized

vortex shedding. For sharp-edged prisms, the flow separates abruptly at the edges, creating

stronger vortices and more intense turbulence in the wake (Wang and Lam, 2019a). Sharp edges

induce higher pressure drag due to abrupt boundary layer separation, resulting in a more irregular

and incoherent wake structure with significant vortex shedding and flow fluctuations.

Flow behavior in both wall-mounted and suspended prisms is heavily influenced by the

Reynolds number, with low Reynolds number flows tending to remain laminar and attached for a

longer distance before separating, while higher Reynolds number flows exhibit turbulent

separation and wake patterns dominated by vortex shedding (Williamson, 1988). These

differences in flow separation and wake formation significantly affect the drag, lift, and pressure
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distribution around the bluff body. In subsequent sections, the wake dynamics of suspended

bodies, such as sharp-edged prisms, flat plates and circular cylinders, are discussed.

2.3.1 Wake of suspended prisms

Sharp-edged, blunt bluff bodies, such as prisms, in addition to the large wake region typical of bluff

bodies, experience an interesting phenomenon of flow recirculation (Sohankar, 2008). This implies

reattachment of the separated shear-layer onto surfaces of the prism. This behavior of separating

and reattaching flows have attracted attension in the field of fluid dynamics (Williamson, 1988;

Sohankar, 2008; Cimarelli et al., 2018; Mashhadi et al., 2021). One of the main features of these

flows is the combined presence of small scales, owing to the occurrence of turbulent motions and

large scales associated with coherent vortex shedding behind prisms. Moreover, these flows differ

from the wake of wall-mounted prisms due to the overarching influence of free-end effects in the

latter.

Various regimes of the flow over square cylinder were briefly presented by Bai and Alam

(2018). They reported that the flow remained steady till Re = 5 × 101, characterized by two

symmetric vortices appearing in the wake and the flow separating at the trailing edges. At low

Reynolds numbers, the laminar regime of square cylinder was further characterized by increasing

length of recirculation region and reducing drag coefficient with increasing Re. At Reynolds

numbers of 5× 101 < Re < 1.6× 102, the flow becomes unsteady with laminar two-dimensional

vortex shedding. The trailing edged flow separation further continues till Re = 1.2× 102, after

which the flow separated from the leading-edges. Specifically at this boundary (Re ≈ 1.2× 102)

there is a drop in length of recirculation region as well as drag coefficient, mainly attributed to the

leading-edge flow separation and adverse pressure gradient effects on the wake. Further, as noted

by Williamson (1996) and Robichaux et al. (1999), within the range of

1.6× 102 < Re < 2.2× 102, dominance of Mode A and Mode B instabilities cause the transition

from two to three dimensional fluctuations in the wake, with the drag coefficient reaching a

minima while recirculation length remains invariant. This range of Reynolds numbers, where the
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regime of two-dimensional vortex shedding transitions to three-dimensional vortex shedding, is of

particular interest in the study of flow around sharp-edged prisms. From there on, the transition to

fully turbulent shear-layer beyond the trailing edge is observed at 2.2×102 < Re < 1×103. This

regime is characterized by the presence of large-scale vortices in the wake, which are attributed to

the interactions between separated shear-layers and free-end vortices (Williamson, 1988).

Moreover, at Re > 1×103, the transition to turbulence within the shear-layer occurs closer to the

leading-edge of the prism, leading to an intermittent reattachment of the shear-layer on the prism

surfaces (Lander et al., 2018). In this high Reynolds number turbulent regime, the drag coefficient

and recirculation lengths increase.

Flow around sharp-edged prisms with varying aspect-ratios (length-to-height) and Reynolds

numbers is characterized by Mashhadi et al. (2021), whose study of rectangular prisms focused on

low Reynolds numbers between 3×101 and 2×102. They observed the changes in wake stability

by changing aspect-ratio, such that elongated bodies (rectangular cross-sections) exhibited steady

and two-dimensional wakes. Moreover, the critical Reynolds number associated with the onset

of vortex shedding increased with aspect-ratio. Further, increasing aspect-ratio resulted in higher

probability of the separated flow to reattach onto side surfaces of the prism. Moreover, at higher

Reynolds numbers (Re = 2× 102), increasing aspect-ratio made the three-dimensional unsteady

flow transition into two-dimensional unsteady regime (Mashhadi et al., 2021).

Influence of leading-edge flow separation was studied by Moore et al. (2019a), who

experimentally investigated the flow around rectangular prisms at Reynolds numbers between

1× 104 and 1× 105. At such high Reynolds numbers, sharp leading-edge of the prism induces

flow separation regardless of the adverse pressure gradient. Moore et al. (2019a) further noted

that with sufficiently long prism lengths, the separated leading-edge shear-layer, initially laminar,

soon undergoes transition to turbulence and reattach onto the prism side surfaces. Further, the

transition to turbulence in the shear-layer is accompanied by a train of co-rotating vortices

forming from the leading-edge separation, which are characterized by their high-frequency

signatures in the frequency spectra. These co-rotating train of vortices and the related phenomena
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of Kelvin-Helmholtz instability are, thus, of significant interest in the study of flow around

sharp-edged prisms.

2.3.2 Wake behind flat plates

Wall-mounted thin flat plate is a special case of prisms with changing depth-ratio. The fixed

leading-edge flow separation with no reattachment on the side surfaces of the flat plate makes it

an interesting case to study the wake dynamics. Previously, such cases have been investigated

in terms of flow over fences (Chan et al., 2022). Experimentally, the flow around suspended flat

plates have been studied by Fage and Johansen (1927) and Wu et al. (2005) using sharp-edged flat

plates. Numerically, however, investigating the flow around flat plates becomes complicated owing

to the sharp leading-edge flow separation and the absence of reattachment on the side surfaces. To

address these challenges numerically, a thin flat plate is generated of the streamwise length of a

single grid point (Najjar and Balachandar, 1998; Narasimhamurthy and Andersson, 2009; Hemmati

et al., 2016).

Wake dynamics of such bodies are complex and highly three-dimensional. Further, the vortex

shedding processes and wake structures differed between low and high Reynolds number flows.

At low Re, a laminar regime was observed and led to symmetric vortex shedding (Najjar and

Balachandar, 1998). Moreover, the shedding process at low Re was attributed to transition-in-

wake phenomena as a result of laminar instabilities in the flow (Zdravkovich, 1997). At high Re,

transition in shear-layer was observed, mainly associated with the formation of dominant vortices

shedding from the shear-layers. Thus, as Reynolds number increased for the flow around thin flat

plates, flow instabilities magnified with the formation and interactions of small-scale eddies and

three-dimensional effects, leading to highly incoherent wake structures (Wu et al., 2005). In simple

terms, the flow around flat plates were highly influenced by Reynolds numbers.

Three-dimensional wake of normal infinite-span thin flat plate was first numerically

investigated by Najjar and Vanka (1995). This study investigated three-dimensional effects of

vortex structures in the wake, such as the formation and breakdown of ribs and rollers. Spanwise,
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large-scale vortex structures that shed from the plate edges are referred to as vortex rollers, while

smaller-scale, secondary streamwise structures connecting the rollers are referred to as

ribs (Williamson, 1996). Moreover, vortex roll-up behind the flat plate was prolonged

downstream, enabling a prolonged spanwise vortex shedding (Zdravkovich, 2003). As such, the

wake of infinite-span thin flat plate was highly incoherent and asymmetric compared to

two-dimensional flat plates. Finite aspect-ratio thin flat plate showed different topologies

compared to infinite-span flat plate (Hemmati et al., 2015). Suppression of secondary spanwise

instabilities in case of finite flat plates, as well as indication of a single dominant shedding

frequency, indicated that the two shear-layer from either sides of the plate rolled-up

simultaneously into a single large-scale vortex structure. The dominant shedding structures in this

case resembled a hairpin-like vortex (Hemmati et al., 2016). Moreover, a shear-layer peel-off

mechanism was observed, which significantly increased the shedding frequency and reduced the

length of recirculation region compared to infinite-span flat plates (Hemmati et al., 2016).

2.3.3 Wake of circular cylinders

Flow over circular cylinders differ from that of sharp-edged prisms due to the continuous

curvature of its surface. Flow separates from the circular surfaces due to shear-layer detachment

caused by the adverse pressure gradient around them (Norberg, 2001). Moreover, flow around

circular cylinders is divided into several regimes based on Reynolds number. At low Reynolds

numbers (≤ 3 × 105), flow separates symmetrically on both sides, resulting in a von Kármán

vortex street, i.e. a periodic and alternating vortex shedding. This range of Reynolds numbers is

refereed to as sub-critical regime, where it experiences high drag coefficients (∼ 1 − 1.2). At

higher Reynolds numbers, especially in the supercritical regime (Re > 3× 105), boundary layer

transition to turbulence can cause flow reattachment downstream, reducing drag significantly in

the “drag crisis” phenomenon (Singh and Mittal, 2005). Once the drag crisis occurs and the

boundary layer transitions to turbulence, the drag coefficient drops significantly, to as low as

0.3− 0.5, depending on the flow conditions and surface roughness. Wake of circular cylinders
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depend entirely on Reynolds numbers (Roshko, 1993; Wiliamson, 1996). The aspect-ratio

(length-to-diameter ratio) has a limited effect on the overall flow structure, as the primary wake

features are dominated by the circular cross-section. The flow behavior remains relatively

consistent along the length of the cylinder unless its aspect-ratio is extremely small, leading to

end effects (Sakamoto and Arie, 1983).

Shear-layer transition to turbulence and generation of instabilities occurs beyond the

supercritical Reynolds number regime. At higher Reynolds numbers, the turbulence transition

point in the shear-layer moves upstream, resulting in a turbulent wake (Bloor, 1964; Wei and

Smith, 1986). Two dimensional shear-layer vortices eventually transition to three-dimensional

turbulent structures with increase in Reynolds number due to the influence of three-dimensional

small-scale fluctuations (Wei and Smith, 1986). Shear-layer instability in this case is the same as

Kelvin-Helmholtz instability (Bloor, 1964). Kelvin-Helmholtz instability driven vortices interact

with the primary von Kármán vortices and aid the entrainment of fluid into the formation region.

Similar to sharp-edged prisms, interactions between the shear-layer vortices and primary vortices

are interesting to study.

2.4 Approaches to Flow Studies

There has been a variety of approaches over the past decades to study wake structures formed

around wall-mounted prisms. Experimental methods have historically provided direct

observations and measurements of flow behavior (Wiliamson, 1996), while numerical

simulations (Wilcox et al., 1998) have enabled detailed investigation of the flow dynamics over a

wide range of conditions. More recently, data-driven approaches (Mendez et al., 2023),

leveraging advances in machine learning and data analytics, have gained momentum in analyzing

and predicting flow fields with unprecedented accuracy and efficiency. Each of these approaches

offers distinct advantages and presents its own set of challenges. Experimental methods allow for

real-world validation of theoretical models but are often limited by instrumentation and scale
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effects. Numerical simulations, on the other hand, provide high-resolution data and predictive

capabilities, though they can be computationally expensive. This section provides an overview of

these approaches, specifically focusing on numerical analysis using OpenFOAM.

2.4.1 Experimental Studies

Experimental methods have played a foundational role in advancing our understanding of wakes.

Early experimental studies were essential in observing complex flow phenomena, such as vortex

shedding, boundary layer separation, and the development of turbulent wakes (Castro and Robins,

1977; Hussain, 1986; Sumner et al., 2004; Miau et al., 2004). Techniques like wind tunnel testing,

water channel experiments, and flow visualization have provided valuable insights into the

physical behavior of fluids interacting with bluff bodies. One of the primary advantages of

experimental approaches is the ability to directly measure flow quantities, such as velocity fields,

pressure distributions, and forces acting on the body. Laser Doppler Velocimetry (LDV) and

Particle Image Velocimetry (PIV) have become critical tools for capturing velocity profiles and

turbulence characteristics in wakes. These methods allow for detailed investigation of flow

structures, including vortex formation and shedding.

Castro and Robins (1977) investigated the flow around a wall-mounted cube using wind

tunnel experiments and examined two types of incoming flow over the cube, namely an

irrotational uniform flow and turbulent shear flow. They observed that size of the recirculation

region behind the cube reduced with increasing Reynolds number, using the turbulent inflow

conditions. Hunt et al. (1978) further performed water channel experiments to study the vortical

structures behind wall-mounted obstacles to identify mean and instantaneous wake topologies

behind typical wall-mounted obstacles, e.g., sharp-edged and smooth cylinders. Experimental

studies have also enabled sensitivity studies on Reynolds number and aspect-ratio. For example,

wind-tunnel experiments of Park and Lee (2000) quantified a direct correlation between cylinder

aspect-ratio and vortex-shedding characteristics behind wall-mounted circular cylinders. They

observed that aspect-ratio significantly influenced the vortex shedding frequency and wake
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dynamics, such that the peak in turbulence intensity moved further downstream in the wake with

decreasing aspect-ratio. High-Reynolds-number experiments have demonstrated the critical role

of flow separation points and their influence on drag, lift, and the formation of coherent structures

in the wake (Wang et al., 2006; Wang and Zhou, 2009; Wang and Lam, 2019a; Moore et al.,

2019a).

The range of Reynolds numbers studied in experiments has been crucial in understanding the

transition from laminar to turbulent flow regimes. For example, Okajima (1982) studied a wide

range of Reynolds numbers between 7× 101 and 2× 104 using water channel and wind tunnel

experiments. They observed that within a special range of Reynolds numbers and aspect-ratios,

flow patterns abruptly changed, accompanied by discontinuities in Strouhal number. Further, PIV

measurements of Bourgeois et al. (2011) and Sattari et al. (2012) revealed the formation of

large-scale structures and quasi-periodic vortex shedding behind wall-mounted prisms with

aspect-ratio of 4. They further reported the existence of full-loop and half-loop vortex structures

in the wake of wall-mounted square prisms with increasing aspect-ratios. These studies have

provided valuable insights into the flow dynamics and wake characteristics of bluff bodies,

highlighting the importance of experimental methods in understanding complex flow phenomena.

Experimental studies are often limited by cost, scale, and accessibility. Wiliamson (1996)

discussed how performing a comprehensive set of experiments over a wide range of Reynolds

numbers and geometries would require substantial resources, making it impractical for academic

research. Further, Scarano and Riethmuller (2000) and Scarano and Poelma (2009) found that

PIV was unable to resolve the smallest turbulent scales in very-high Reynolds-number flows

around bluff bodies, which affected their ability to fully capture three-dimensional unsteady

structures in the wake. Despite these challenges, experimental studies remain indispensable in

fluid dynamics, especially for validating numerical models and providing insights into

phenomena that are difficult to capture computationally. The limitations of experiments are often

mitigated by combining them with numerical simulations and data-driven approaches, creating a

more comprehensive understanding of the flow.
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2.4.2 Numerical Simulations

Numerical simulations, particularly Computational Fluid Dynamics (CFD), have become essential

tools for investigating fluid flow around bluff bodies, offering a high degree of control over flow

conditions and the ability to explore a wide range of Reynolds numbers. These simulations provide

detailed insights into the flow fields, including the intricate structures in the wake and boundary

layer regions that are difficult to capture experimentally. CFD studies of wakes have leveraged

various numerical methods, such as Direct Numerical Simulation or DNS (Hemmati et al., 2018b;

Zargar et al., 2022b; Rastan et al., 2017), Large Eddy Simulation or LES (Hemmati et al., 2018b;

Saeedi and Wang, 2015; Rastan et al., 2021), and Reynolds-Averaged Navier-Stokes or RANS

models (Uffinger et al., 2013; Tominaga, 2015; Hassan et al., 2022), to predict flow separation,

reattachment, vortex shedding, and wake characteristics. Moreover, CFD simulations have been

performed over a wide range of Reynolds numbers and geometries to explore the influence of these

parameters on flow dynamics.

Extensive computational requirements for detailed numerical simulations, such as DNS,

intuitively limit the range of Reynolds numbers at reasonable cost. DNS solves full Navier-Stokes

equations without any modeling, resolving all scales of turbulence down to the smallest

(Kolmogorov) scales. For example, Mittal and Balachandar (1995) conducted DNS of flow past a

square cylinder at a Reynolds number of 3× 102, providing detailed analysis of vortex shedding

patterns and flow reattachment. This approach provides a complete picture of the flow, including

the intricate details of turbulence, making it an invaluable tool for fundamental research. DNS is

highly effective at low Reynolds numbers, Re ≤ 5× 103 (Saha et al., 2000; Yakhot et al., 2006;

Sohankar, 2008; Saha, 2013), where computational resources can handle the full resolution

required to capture turbulent structures.

At higher Reynolds numbers, where fully turbulent flows are dominant, LES and RANS models

are commonly used due to their lower computational cost compared to DNS. LES and RANS

models enable simulations at higher Reynolds numbers in the order of O(104−106). LES captures

large, energy-containing eddies and models smaller scales, making it particularly effective for
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flows where vortex dynamics and wake structures are critical (Saeedi and Wang, 2015). RANS

on the other hand models the entire turbulent flow field, providing a time-averaged solution that is

computationally less expensive than LES. For example, Uffinger et al. (2013) used RANS to study

the flow around a wall-mounted square cylinder at Reynolds numbers ranging from 1× 104 to

1× 105, providing insights into the flow separation and reattachment behavior. Another example

is the work of Rodi (1997), which compared the flow around wall-mounted cube at Reynolds

numbers between 2.2×104 and 4×104. Moreover, a well validated numerical model, such as LES,

can provide detailed insights into the flow dynamics, including formation of coherent structures,

evolution of vortices, and interactions between shear-layers and the wake (da Silva et al., 2020,

2024). In this dissertation, numerical simulations are employed to study the flow around wall-

mounted prisms, specifically utilizing LES and DNS methods to capture complex wake features

and vortex interactions. The results from these simulations are validated against experimental

data and other high-fidelity numerical simulations to ensure the accuracy and reliability of the

computational approach.

2.4.3 OpenFOAM

LES and DNS results were obtained using Open Field Operation and Manipulation

(OpenFOAM), which was initially developed by Jasak (1996) at Imperial College London, with

further advancements by Weller et al. (1998). It is an open-source CFD framework based on the

finite volume method, capable of handling polyhedral meshes. OpenFOAM provides a suite of

C + + libraries and tools designed to simulate complex fluid flow phenomena, including

turbulence, combustion, magnetohydrodynamics, and chemical reactions, among others.

Additionally, it includes pre- and post-processing applications for mesh generation, field

manipulation, decomposition, and data sampling. This dissertation utilized the ESI version of

OpenFOAM (v2012 and v2312) for all simulations.
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OpenFOAM applications are organized into two primary categories: solvers and utilities.

Solvers perform the core calculations required to solve flow equations, while utilities offer a wide

range of pre- and post-processing capabilities.

A key strength of OpenFOAM is its extensibility. Built using C ++ and object-oriented

programming principles, the source code is freely available as open-source, allowing users to

modify and extend its functionalities. This object-oriented design makes the implementation of

equations and solvers more intuitive. For example, the fluid flow momentum equation,

∂ρu
∂ t

+ ∇ ·ϕu − ∇ ·µ∇u = −∇p, (2.1)

is represented by the code as,

solve

(

fvm::ddt(rho, U)

+ fvm::div(phi, U)

- fvm::laplacian(mu, U)

==

- fvc:grad(p)

)

One of the disadvantages of OpenFOAM is a lack of Graphics User Interface (GUI). It works

using a structure of input files for each case, as shown in Figure 2.2. Here, the case is divided in to

three directories:

• “0” is a time directory containing initial and boundary conditions required for the simulation,

along with individual files containing the data for particular fields such as velocity (“U”),

pressure (“p”), etc.
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Case

0

- U

- p

- k

- epsilon

- omega

system

- controlDict

- fvSchemes

-fvSolution

- decomposeParDict

constant

- transportProperties

- turbulenceProperties

polyMesh

- boundary

- points

- faces

- neighbour

- owner

Figure 2.2: Case structure in OpenFOAM

• “system” directory contains the setting parameter files associated with the solution

procedure. It should have at least 3 files: “controlDict”, where the simulation control

parameters are defined including start/end time and time step; “fvSchemes”, where the

discretization schemes are set; “fvSolution”, where the algorithm and solver tolerances are

set.

• “constant” directory contains the files describing the fluid properties and specifying

turbulence modelling. It also contains the full description of the domain mesh in a

sub-directory named “polyMesh”.

Once the file structure in OpenFOAM is understood, the next critical component to explore is

its extensive library of solvers and utilities. OpenFOAM offers a wide range of pre-built solvers
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tailored for different types of flow problems, such as incompressible flows, compressible flows,

multiphase flows, turbulent flows, and heat transfer. These solvers are accessible via the command

line and are highly customizable, allowing users to modify them to suit specific requirements

of their simulation. Solver simpleFoam is commonly used for steady-state, incompressible flow

simulations, while pimpleFoam and pisoFoam are used for transient simulations involving large

time steps. Similarly, icoFoam and potentialFoam are used for low Reynolds number laminar flow

or potential flow problems, respectively. Transient solvers pimpleFoam and pisoFoam are utilized

for unsteady flow simulations in this thesis. These solvers are based on the pressure-velocity

coupling algorithm, which is essential for capturing complex wake dynamics and vortex shedding.

Moreover, modular structure of OpenFOAM enables the addition of custom solvers or modification

of existing ones, which is one of its key strengths in academic and research environments.
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Chapter 3

METHODOLOGY
‡

This dissertation employs numerical simulations to study the wake of wall-mounted prisms. This

chapter presents the methodology of simulating the flow in this study. First, the problem

description provides details on case selection, construction of domain and spatial discretization in

Section 3.1. The governing equations and discretization schemes are discussed in Section 3.2. A

discussion of the boundary conditions in setting up the numerical simulations is provided in

Section 3.3. The boundary layer thickness measurement and its implications on the flow are

discussed in Section 3.4 followed by statistical analysis and time-averaging in Section 3.5.

Verification and validation studies are presented in Sections 3.6 and 3.7, respectively. This is

followed by a brief discussion of different quantitative and qualitative methods used in

assessment of wake dynamics in Section 3.8.

‡The content of this chapter has been published in whole or part, in Journal of Fluid Mechanics (Goswami
and Hemmati, 2022), International Journal of Heat and Fluid Flow (Goswami and Hemmati, 2023), and Physics
of Fluids (Goswami and Hemmati, 2024) under citations:
“Goswami, S., & Hemmati, A. (2022). Mechanisms of wake asymmetry and secondary structures behind low aspect-
ratio wall-mounted prisms. Journal of Fluid Mechanics, 950, A31”.
“Goswami, S., & Hemmati, A. (2023). Mean wake evolution behind low aspect-ratio wall-mounted finite prisms.
International Journal of Heat and Fluid Flow, 104, 109237”.
“Goswami, S., & Hemmati, A. (2023). Impact of depth-ratio on shear-layer dynamics and wake interactions around
wall-mounted prisms. Physics of Fluids, 36(11):115–149”
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Figure 3.1: Schematics of computational domain (Not to scale) for (a) DR= 0.016 and (b) DR= 4.

3.1 Problem Description

Flow over wall-mounted prisms of different aspect-ratios and depth-ratios is investigated

numerically using OpenFOAM. Both flow and geometrical parameters were selected following

the experimental study of Wang and Zhou (2009) and numerical setup of Saeedi et al. (2014).

Schematics of the computational domain, containing the wall-mounted prism and the definition of

the coordinate system, is presented in Figure 3.1. Streamwise (x), spanwise (z) and normal (y)

dimensions of the prism were presented in terms of length (l), width (d) and height (h). Here, a
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rectangular prism with aspect-ratios of AR = h/d = 0.25 − 1.5 were mounted on the base

(ground) of the domain. Multiple cases of varying depth-ratios (DR = l/d) were considered

between 0.016− 4. The study of DR = 0.016 represents the special case of a wall-mounted very

thin prism, the wake of which have been partly characterized in literature in terms of flow over

fences (Chan et al., 2022). Computational domain with dimensions Lu = 10d,Ld = 20d,H = 6d,

and W = 12d was considered for all simulations. This numerical setup was designed following

the detailed sensitivity studies on the computational domain size presented later in Section 3.6.

Choice of depth-ratio and aspect-ratio were based on the design of electronics chips (Rastan et al.,

2017) and flow manipulators employed in biomedical applications (Jia et al., 2021).

Reynolds number was defined based on the prism width (d) and free-stream velocity (Ub), i.e.,

Re =Ubd/ν , where ν is the kinematic viscosity of the fluid. Multiple simulations were completed

over the range of Reynolds numbers (Re) between 5× 101 and 1× 104 using direct methods of

solving the Navier-Stokes equations for Re ≤ 1.5×103 and Large Eddy Simulation for Re > 1.5×

103. In past studies (Zhang et al., 2017; Rastan et al., 2021), numerical analysis using DNS, LES,

and RANS have covered Reynolds numbers between 5× 101 and 1× 103. While a handful of

studies looked at Reynolds numbers between 103 − 104, they were all case specific and provide

limited understanding of the complex, multivariate wake dynamics. Since the onset of unsteady

wake and turbulent effects in the wake of prisms occur at Reynolds numbers between 103 and

104 (Wang and Zhou, 2009; Rastan et al., 2021; Zargar et al., 2022b), the present study aimed to

bridge the gap in the literature by providing a comprehensive analysis of the wake dynamics over

a wide range of Reynolds numbers.

A non-homogeneous, multi-block gird, consisting of 7.32 × 106 − 4 × 107 hexahedral

elements, depending on depth-ratio and Reynolds numbers, was developed for the simulations.

As an example, the grid distribution for the smallest depth-ratio (DR = 0.016) and the largest

depth-ratio (DR = 4) prisms are demonstrated in Figure 3.2. Grid setup mimicked previous

numerical studies of Saha (2013) and Zargar et al. (2021a), where the finer grid was placed close

to the prism and the wall, while maintaining a low grid expansion ratio below 3% throughout the
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Figure 3.2: Spatial grid distribution for the wall mounted prism of (a) DR = 0.016 and (b) DR = 4,
presented in (a, b) Side view at z/d = 0 and (c, d) Top view at y/d = 0.5.
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Figure 3.3: Schematics of multi-block grid setup for wall-mounted prism with DR = 4.

domain. This enabled accurate simulation of anisotropic small-scale flow structures in the vicinity

of the prism, as well as downstream wake structures. The grid was refined in the vicinity of the
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prism to capture the boundary layer and shear layer development, accurately. Grid refinement in

the wake region further enabled capturing the evolution of wake structures, vortex shedding, and

their interaction with the shear layer. Refinement in the spanwise direction provided the necessary

resolution to capture spanwise vortices and their interaction with the shear layer. Multi-block

meshing strategy helped generate a smoother mesh and non-homogeneous element placement,

allowing user defined adjustment of the number of elements per specific area. Schematics of

multi-block grid is shown in Figure 3.3. This was particularly useful in the present study as it

allowed for a more accurate representation of flow around the prism, especially in regions of

interest, such as the leading-edge shear layer and downstream vortex shedding.

3.2 Governing Equations and Discretization

DNS was employed for Re ≤ 1.5× 103, while LES was used for Re > 1.5× 103. The governing

equations were discretized using the finite volume method and were solved using OpenFOAM.

Further details on the governing equations and discretization schemes are provided below.

3.2.1 Direct Numerical Simulations

Three-dimensional (3D) incompressible continuity and Navier-Stokes momentum (Eq.3.1 and

Eq.3.2) equations were directly solved using OpenFOAM for Re ≤ 1.5×103:

∂ui

∂xi
= 0 (3.1)

∂ui

∂ t
+u j

∂ (ui)

∂x j
=− 1

ρ

(
∂ p
∂xi

)
+ν

∂ 2ui

∂x jx j
. (3.2)

Here, ui is the velocity component, p is pressure, ρ is density, and ν is kinematic viscosity. All flow

parameters were normalized using the free-stream velocity, Ub, and the prism width, d. Discretized

equations were solved using pimpleFoam, which enabled better numerical stability (Holzmann,

2016). PIMPLE algorithm is the combination of pressure implicit with splitting operator (PISO)
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and semi-implicit method for pressure linked equations (SIMPLE) algorithms (Holzmann, 2016).

pimpleFoam solver was utilized in PISO mode by specifying single outer-correction iteration and

three pressure correction loops to couple pressure and velocity equations.

3.2.2 Large Eddy Simulations

LES was employed for Re > 1.5×103, which utilizes sub-grid scale (SGS) models through spatial

filtering of the Navier-Stokes equations to distinguish between large and small scale structures in

the flow. Sub-grid scale models assume that capturing the exact feature of dissipative eddies is not

critical if large scale turbulence is correctly resolved (Reif and Durbin, 2011). Thus in LES, large

scale eddies defined by the grid-size (∆) are solved directly, while small scale eddies are modeled

based on an Eddy viscosity model. In this dissertation, Dynamic Smagorinsky Model was utilized

to model the sub-grid scale eddies (Reif and Durbin, 2011).

Large-scale components were calculated using filtered incompressible, three-dimensional

continuity and Navier-Stokes equations, given by:

∂ ũi

∂xi
= 0 (3.3)

∂ ũi

∂ t
+ ũ j

∂ (ũi)

∂x j
=− 1

ρ

(
∂ p̃
∂xi

)
+ν

∂ 2ũi

∂x jx j
−

∂τSGS
i j

∂x j
, (3.4)

where,

τ
SGS
i j = ũiu j − ũiũ j = νSGS

(
∂ ũ j

∂xi
+

∂ ũi

∂x j

)
= c2

s mi j (3.5)

is the sub-grid scale (Leonard) stress tensor, which is modeled (Reif and Durbin, 2011). Here, νSGS

is the sub-grid scale viscosity and cs is the sub-grid scale coefficient defined as (Lilly, 1992):

c2
s =

La
i jMi j

Mi jMi j
, (3.6)

where
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Mi j =
(

mtest
i j − m̂SGS

i j

)
. (3.7)

Here, mtest
i j is the test-grid and m̂SGS

i j denotes the grid level stress tensors. The resolved quantities

at the grid level are denoted using an overbar, while quantities filtered at the test-grid level for the

dynamic procesure are denoted using a tilde. In order to perform the dynamic modeling procedure,

filter size ratio between the grid and test-grid levels is set to 2. Smagorinsky-lilly model (Lilly,

1992) minimizes the error in the system of equations using the least square method. The sub-

grid scale coefficient, c2
s , varied significantly over space and time. In order to avoid numerical

instabilities, the value of cs was restricted to positive values,

cs = max(cs,0). (3.8)

Dynamic Smagorinsky model was implemented in OpenFOAM using the LESModel library,

which is a part of the pisoFoam solver, a transient solver for incompressible flows incorporating

the Pressure Implicit with Splitting Operator (PISO) algorithm.

3.2.3 Discretization Schemes

The diffusive and convective terms of the governing equations were discretized, spatially and

temporally, using second-order accurate numerical schemes. A second-order implicit backward

Euler scheme was utilized for temporal discretization. The discretized equations were then solved

using pimpleFoam and pisoFoam solvers. A Preconditioned bi-conjugate gradient (PBiCGStab)

iterative solver was utilized to solve both, pressure and pressure-velocity coupled equations. The

diagonal incomplete-Cholesky (DIC) preconditioner was used for pressure equation and diagonal

incomplete-LU preconditioner method was used in pressure-velocity coupled equation. The

absolute error tolerance criteria for pressure and velocity was set at 10−6. Time-marching

simulations were performed with an adjusted temporal grid to maintain a maximum Courant

number below 0.8 to ensure numerical stability.



Chapter 3. Methodology 51

3.3 Boundary Conditions

Appropriate prescription of boundary conditions is crucial for accurate simulation of the flow.

Different types of boundary conditions were utilized in this research. These are discussed below.

3.3.1 Inlet Boundary Condition

Influence of the inlet boundary conditions on the accuracy of flow statistics and wake dynamics

has been studied both experimentally (Castillo and Johansson, 2002; Slessor et al., 1998) and

numerically (Saeedi and Wang, 2015; Boersma et al., 1998) across various flow configurations.

However, this topic remains an open question in the field of numerical simulations of turbulent flow,

particularly for turbulent wakes (Saeedi et al., 2014; Saeedi and Wang, 2015). Prescribing accurate

inflow boundary conditions at the inlet of a computational domain presents a significant challenge

in DNS and LES studies. Since the exact time-dependent flow conditions at the inlet are often

unknown, boundary conditions must be applied to ensure a statistically realistic representation of

actual turbulent flow.

Several approaches have been developed to generate realistic inflow conditions for DNS and

LES (Tabor and Baba-Ahmadi, 2010). These include imposing synthesized turbulence at the inlet

boundary, also known as stochastic reconstruction from one-point statistics, and a deterministic

approach based on solving the Navier-Stokes equations at the inlet. Both methods aim to provide

inflow conditions that are statistically consistent with the flow. However, both these methods

have notable limitations. A major drawback is that generated fluctuation field is not derived from

the physical flow characteristics and does not satisfy the governing equations of flow, which can

introduce additional errors.

In this thesis, the focus was to understand the wake of wall-mounted prisms under inherent

boundary layer conditions that naturally form over a flat plate (ground). To this end, a fixed uniform

velocity profile was prescribed at the inlet boundary enabling the flow to evolve naturally over the
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prism. The uniform velocity profile was set to the free-stream velocity (Ub) and was directed along

the streamwise direction.

3.3.2 Outlet Boundary Conditions

When the outlet boundary is placed sufficiently far from any sources of perturbation within the

flow domain, it can be assumed that the flow has reached a fully developed state by the time it

reaches the outlet. For turbulent flow over wall-mounted obstacles, flow instabilities, separated

boundary layers, and vortex shedding should have significantly decayed before reaching the outlet

boundary. In such cases, a zero-gradient boundary condition (also known as the Neumann

boundary condition) can be applied. This condition sets the derivative of flow properties

perpendicular to the outlet boundary to zero, i.e.,

∂ψ

∂n
= 0, (3.9)

where, ψ is the flow property and n is the normal vector to the outlet boundary. This boundary

condition was applied to the velocity components and pressure at the outlet boundary.

Neumann-type boundary conditions were applied instead of convective outflow conditions since

the outflow boundary was placed sufficiently far from the physical region of interest. Further,

Neumann conditions minimized reflections and boundary-induced disturbances.

3.3.3 Wall Boundary Conditions

Wall boundary condition was one of the fundamental boundary conditions frequently encountered

in simulations of wall-bounded flows. Specific wall boundary conditions are applied to the prism

surface and the ground surface, as discussed below.
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No-Slip Wall

No-slip boundary condition is often applied to walls of the computational domain (Ferziger et al.,

2002). This condition implies that the immediate layer of fluid adjacent to the surface accelerates

with the same tangential velocity as the surface (Ferziger et al., 2002). The no-slip boundary

condition assumes that there is no tangential component of relative velocity at the surface. This

condition was applied to the prism surface and the ground surface in numerical simulations within

this dissertation. No-slip boundary condition was implemented in OpenFOAM using the fixedValue

function, which set the velocity components to zero at the wall.

Slip Wall

This boundary condition describes free-surface flow conditions such as open channels or

boundaries. Thus, in cases such as free-surface water channel, the interface boundary between

water and surrounding air can be described by slip boundary condition. In that case, the velocity

component perpendicular to the boundary is set to zero to maintain the impermeability condition

while for other velocity components, the normal gradient are set to zero:

∂ui

∂n
= 0, (3.10)

where, n is the normal vector to the slip boundary. In this study, slip boundary condition was

implemented in OpenFOAM using the slip function, which set the normal gradient of the velocity

components to zero at the wall.

3.3.4 Symmetry/Periodic Boundary Conditions

If the flow is homogeneous in a specific direction, turbulence statistics are invariant in that

direction. For example, turbulent plane channel flow is homogeneous in spanwise and streamwise

directions. In such cases, if the domain is large enough to account for the largest turbulent

structures and eddies, the flow can be assumed to be periodic in the spanwise direction. Similarly,
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if the flow is symmetric about a plane, flow statistics are invariant about that plane. In the present

research, domain boundaries were designed to be sufficiently far from the wall-mounted prism

and as such the flow was assumed to be periodic in the spanwise direction. Periodic boundary

condition for any typical flow quantity (ψ) is given by

ψ(x,y,z) = ψ(x,y,z+W ), (3.11)

where W is the spanwise width of the computational domain. In OpenFOAM, periodic boundary

condition was implemented using the cyclic function, which sets velocity components at the

periodic boundary to be equal to their corresponding values at the opposite periodic boundary.

3.4 Boundary Layer Thickness

Boundary layer refers to the thin layer of fluid that forms near a surface at a different velocity.

This formation is attributed to friction between the surface and the fluid, which creates a region of

large velocity-gradient, known as boundary layer (Schlichting and Gersten, 2016). The distance

from the surface, where the fluid velocity increases from zero to 99% of the free-stream velocity, is

referred to as the boundary layer thickness. Calculation of the boundary layer thickness depends on

whether the flow is laminar or turbulent. Consider the flow over a flat plate. In a laminar boundary

layer, the flow is smooth and steady with lower friction. Thus, its thickness can be calculated using

the Blasius solution (Blasius, 1950):

δ ≈ 5x/
√

Rex, (3.12)

where, x is the distance from the leading edge of the plate and Rex is the Reynolds number based

on x and δ is the boundary layer thickness. In turbulent flows, characterized by surface roughness,

randomness, and higher intensity, the boundary layer thickness is typically estimated using the

following approximation (Blasius, 1950):
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Figure 3.4: (a) Distribution of the time-averaged and root-mean-square of streamwise velocity,
i.e. u and u′, normalized by free-stream velocity (Ub), at Re = 2.5× 102. Measurements were
performed in the absence of the prism. Dashed line shows the boundary-layer thickness (δ/d).
(b) Boundary layer profile prior to reaching the prism compared with the Blasius boundary layer
profile.

δ ≈ 0.37x/Re1/5
x , (3.13)

Boundary layer thickness was calculated for different Reynolds number cases, and their

variation with Reynolds number, as well as their implications on the flow field, are discussed in

subsequent sections.

Low Reynolds number flow

Figure 3.4 presents distributions of time-averaged streamwise velocity (u) and root-mean-square

of streamwise velocity (u) normalized by free-stream velocity (Ub) in the case of a free-flow with

no prism. Dashed lines shows the boundary layer thickness (δ ), which is δ/d ≈ 3 for

Re = 2.5 × 102. The boundary layer thickness varied between 2.65 and 3.95 with lowering

Reynolds number from 5×102 to 5×101. It is important to note that a laminar boundary layer is

expected at low Reynolds numbers analyzed in this dissertation (Saha, 2013; Zargar et al.,

2021b). Since the boundary layer was laminar, and its thickness changed with Reynolds number,
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Figure 3.5: (a) Distribution of the time-averaged and root-mean-square of the streamwise velocity
(u and u′) at the location of the leading-edge of the prism at Re = 2.5× 103; and (b) Distribution
of the time-averaged streamwise velocity (u) at the location of the leading-edge of the prism at
Re = 1× 103,2.5× 103, and 5× 103. Measurements were performed in absence of the prism.
Dashed line shows the boundary layer thickness (δ/d).

implications of boundary-layer thickness and dynamics on the wake topology were incorporated

in the analysis. Moreover, Smits et al. (2019b) and Goswami and Hemmati (2020) have had

scrutinized how immersing the prism inside the boundary layer affect flow dynamics compared to

partially immersed case. Given the aspect-ratios considered for this research

(AR = h/d = 0.25− 1.5), prisms were always fully immersed in the boundary layer. Boundary

layer thickness may have a pronounced effect on the flow dynamics around the prism, such that

increasing the boundary-layer thickness enhances upwash flow, significantly Wang et al. (2006).

Finally, Figure 3.4b presents a comparison of the boundary layer profile with that of a theoretical

Blasius solution with a high-order polynomial fitting (9th order).

Moderate Reynolds number flow

At moderate Reynolds numbers (definition provided in Chapter 1), the boundary layer thickness

is expected to be thinner compared to low Reynolds numbers. δ varied between 1.5d and d for

Re = 1×103 and 5×103, respectively, when simulating the flow without placing the prism in the
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domain. The boundary layer thickness at Re = 2.5×103 was δ/d ≈ 1.2 as shown in Figure 3.5a.

Since the boundary layer thickness changes with Reynolds number (see Figure 3.5b), implications

of boundary layer thickness and dynamics on the wake topology has been naturally incorporated

in the current analysis. As noted by Behera and Saha (2019), implications of boundary layer

thickness on the wake are negligible considering a small (∼ 10%) variation in δ . In the current

study, the change in δ is ∼ 8%, while the variations in Reynolds number is ∼ 100% and that for

the depth-ratio is ∼ 99%. Thick boundary-layer (δ/h ≥ 1, fully submerged body) considered in

this study imply that the oncoming flow over the prism length plays a significant role in dictating

the wake characteristics through variations in the strength of separated vortex sheets over the prism

length (Bourgeois et al., 2011).

Further, a local maximum in the streamwise mean velocity profile close to the wall was noted

in Figure 3.5a due to the presence of an unbounded boundary layer. These are typically exterior

boundary layers forming along ground surfaces. Defining characteristic of this type of flow is that

the velocity profile goes through a peak or a local maxima near the viscous boundary layer edge

and then slowly asymptotes to the free stream velocity (Ub) (Swanson and Langer, 2016). Such

boundary layers are typical of numerical studies with open-channel flow configurations and some

very large gap interior flows in channels and pipes. An example of this type of boundary layer flow

is near-wall air flow over a wing in flight (Swanson and Langer, 2016).

3.5 Statistical analysis and time-averaging

Turbulent phenomena are reproducible only in a statistical sense (Reif and Durbin, 2011).

Therefore, various averaged quantities are used to describe turbulent flows, providing physical

insights and a robust understanding of the mechanisms that govern flow structures and their

evolution. In the context of statistically stationary turbulence, where mean quantities are invariant

under any time translation, all mean values are derived through time-averaging. Consequently,
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statistical analysis of the flow is essential for understanding flow dynamics. To analyze unsteady

simulation results in this thesis, both instantaneous and time-averaged quantities were examined.

Turbulent flow fields in this thesis were statistically converged, meaning their statistical

quantities did not depend on time translation. However, time windows for conducting the

time-averaging must be carefully adjusted to ensure that statistical data are accurately

representing physical flow behavior. A key issue in selecting the averaging time window was

determining when to start collecting flow statistics, which should not be influenced by the initial

conditions. It was crucial to ensure that the flow was fully developed and had reached a

statistically converged state before beginning the data collection. To this end, unphysical initial

conditions were excluded prior to statistical analysis.

Evolution of the flow from initial state to a fully-developed state is considered here, for

example, using LES results of the case with AR = 1 and DR = 4 at Re = 2.5× 103. Boundary

conditions of this simulation followed those described in Section 3.3. The flow was initialized

with a uniform velocity profile at the inlet and a zero-gradient condition at the outlet. The prism

was placed at the center of the domain, and the flow was allowed to evolve for a sufficient number

of vortex shedding cycles to ensure its statistical convergence. Sufficient duration of the time

window over which the averaging is performed is another important factor for conducting the

time-averaging. Depending on the flow configuration, duration of the time window can be

characterized based on different time-scales. For the flow around a prism, duration of one vortex

shedding cycle was considered as a proper time-scale. Typically, window for conducting

time-averaging must be long enough such that time-averaged results do not change by increasing

the duration, which is an indication of converged time-averaged statistics.

In the present thesis, all simulations continued for 150 vortex shedding cycles. This number

was chosen based on preliminary results presented in Figure 3.6, which shows the complete

time-history and moving cumulative average of streamwise (u) and normal velocity (v) near the

leading-edge and in the wake of the prism. Figure 3.6 demonstrates that the mean (time-averaged)

quantities are statistically converged after approximately 50 shedding cycles and remained stable
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Figure 3.6: Complete time-history and moving cumulative average of (a, c) streamwise (u) and
(b, d) normal velocity (v) in the wake of the prism with AR = 1 and DR = 4 at Re = 2.5×103.

for the remainder of the simulation time. Further, the final 50 shedding cycles showed no

significant differences in the mean drag coefficient, indicating that the flow is statistically

converged. This time-history provided a clear indication that the flow had reached steady state

conditions after 50 vortex shedding cycles, and the last 100 cycles were sufficient to obtain

reliable time-averaged quantities. The same time-averaging procedure was applied to all

simulations in this thesis.
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3.6 Verification Studies

Verification studies ensured that numerical simulations were accurate and reliable. Numerical

setup is verified by evaluating the sensitivity of results to domain size, spatial grid resolution, and

temporal grid resolution (Hemmati et al., 2018b). Sections below discuss verification studies in

this dissertation.

Low Reynolds number flow

The case of wall-mounted thin flat plate (DR = 0.016) at Reynolds number of 2.5 × 102 was

considered for domain and grid sensitivity since it provided the most complex unsteady wake

dynamics compared to other cases at low Reynolds numbers. All verification and validations

simulations were completed by directly solving the Navier-Stokes equations using pimpleFoam

solver in OpenFOAM. Quantitative assessment of the sensitivity results involved the mean and

turbulent flow quantities, as well as the integral (global) flow variables. The mean axial (u/Ub)

and normal (v/Ub) velocities, along with Reynolds stresses, and turbulence kinetic energy trends

were studied at multiple axial locations downstream of the body. The integral (global) flow

variables compared here were Strouhal number, defined by

Stsh = fshd/Ub, (3.14)

and mean drag coefficient, defined by

Cd =
Fd

0.5ρU2
b dh

. (3.15)

Here fsh is the vortex shedding frequency and Fd is the mean drag force acting on the body.

Sensitivity of simulation results to domain size was evaluated using three domains: Domain 1

(30d × 5d × 10d), Domain 2 (30d × 6d × 12d), and Domain 3 (35d × 6d × 12d). These domains

were designed such that they are larger than those in previous studies involving the wake of wall-

mounted prisms (Saha, 2013; Saeedi et al., 2014; Rastan et al., 2021). Further, Sohankar et al.
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Table 3.1: Grid sensitivity analysis results for wall mounted thin prism case (DR = 0.016).

Study Ntotal Domain Size Stsh |∆Stsh%| Cd |∆Cd%|
Domain 1 6.59×106 30d ×5d ×10d 0.1894 − 1.12255 −
Domain 2 7.32×106 30d ×6d ×12d 0.1875 1 1.0919 2.75
Domain 3 7.58×106 35d ×6d ×12d 0.1876 0.05 1.0918 0.01

Grid 1 8.07×105 30d ×6d ×12d 0.1570 − 1.0835 −
Grid 2 2.49×106 30d ×6d ×12d 0.1804 12.97 1.0940 0.96
Grid 3 7.32×106 30d ×6d ×12d 0.1875 3.78 1.0919 0.21

Time 1 7.32×106 30d ×6d ×12d 0.1875 − 1.0919 −

(1998) and Saha (2013) defined a criterion for design of domains based on blockage ratio (β ) and

domain height (H):

β = (d ×h)/(W ×H)≤ 0.05 & H ≥ h+5d.

This ensured that there are negligible effects on the global flow quantities. Here, the blockage

ratio and domain height were 0.01 and 6d, respectively. Table 3.1 compares Strouhal number

and time-averaged (mean) drag coefficient obtained from three domain sizes, which indicates less

than 1% deviation between Domain 2 and Domain 3. Thus, Domain 2 was selected for the final

simulations.

Quality of the spatial grid was evaluated using three successively refined grids with 8.07×

105, 2.49 × 106 and 7.32 × 106 elements. The grid resolution was identical to previous wake

studies (Narasimhamurthy and Andersson, 2009; Hemmati et al., 2018b; Rastan et al., 2021; Zargar

et al., 2021a). Comparison of the global flow variables in Table 3.1 indicates a good agreement

between Grid 2 and Grid 3. The maximum deviation in Strouhal number and mean drag coefficient

between Grid 2 and Grid 3 was ∼ 4% and ∼ 0.5%, respectively. Since the variations are less than

5%, based on the recommendations of Saha (2013) and Zargar et al. (2021b), Grid 3 was sufficient

to capture global wake features. Finally, assessment of time-step sensitivity was evaluated using

two time steps: Grid 3 (∆t∗ = ∆tUb/d = 0.0065) and Time 1 (∆t∗ = 0.00325). The results in
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Figure 3.7: Effect of grid size on mean velocities at x/d = 3 and y/d = 0.5, for prism of DR =
0.016 at Reynolds number of 2.5×102. Shown are profiles of (a) U and (b) V .
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Figure 3.8: Effect of grid size on wake turbulence characteristics at x/d = 3 and y/d = 0.5, for
prism of DR = 0.016 at Reynolds number of 2.5× 102. Shown are profiles of (a) k/U2
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b .

Table 3.1 show that the Strouhal number and mean drag coefficient were consistent between Grid

3 and Time 1. Since the variations were negligible, temporal resolution of Grid 3 was selected for

the final simulations at Reynolds numbers between 5×101 and 5×102.

The grid sensitivity analysis was expanded by tracing the effects of grid resolution on mean

velocities, Reynolds normal stress (u′u′), and turbulence kinetic energy defined as
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:

Figure 3.9: Contours of the ratio of grid-size to Kolmogorov length scale (∆/η) at y/d = 0.5 for
the case of wall mounted thin prism (DR = 0.016) at Reynolds number of 2.5×102.

k =
1
2
(u′u′+ v′v′+w′w′). (3.16)

While grid sensitivity was performed at two streamwise locations (i.e. x/d = 3 and 5), only the

results at x/d = 3 are shown in Figures 3.7 and 3.8 for brevity. The mean streamwise and normal

velocity profiles are compared in Figure 3.7, where the difference between Grid 2 and Grid 3 was

not substantial inside the base region (∼ 5%). However a slight discrepancy, corresponding to a

maximum of ∼ 11%, was noted in normal velocity. Figure 3.8 compares the profiles of Reynolds

normal stress (u′u′), which was the largest stress in the near-wake region, and turbulence kinetic

energy (k). The results were consistent with those of mean flow, meaning that the turbulent field

was not sensitive to spatial grid size for Grid 2 and Grid 3. Although Grid 2 was sufficient for

accurately solving the flow, Grid 3 was utilized to ensure the grid resolution was sufficient for

capturing all small- and large-scale flow features.

Further examination of the spatial resolution was complemented by investigating the ratio of

grid size to Kolmogorov length scales (∆/η). Accuracy of the simulation results requires the

smallest resolved scales to be of the same order of magnitude as the Kolmogorov length

scale (Moin and Mahesh, 1998; Kawamura et al., 2007; Narasimhamurthy and Andersson, 2009;
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Saeedi et al., 2014; Hemmati et al., 2018b; Rastan et al., 2021). The grid size was estimated using

∆ = (∆x×∆y×∆z)1/3

following the recommendations of Yakhot et al. (2006). Kolmogorov length scale was estimated

using

η = (ν3/ε)1/4,

where ε is the viscous dissipation rate defined by

ε = 2νSi jSi j,

and Si j was the strain-rate tensor (Pope, 2001). Contours of ∆/η are studied to ensure adequacy

of downstream grid quality. Past studies on bluff body wakes recommend ∆/η ≤ 4 until 8d

downstream of the body (Narasimhamurthy and Andersson, 2009; Hemmati et al., 2016), while

numerical studies of Yakhot et al. (2006) and Saeedi et al. (2014) on wall-mounted prisms

recommend an optimum criterion of 2 ≤ ∆/η ≤ 5 for the critical wake region. Contour of ∆/η in

Figure 3.9 reveals that ∆/η increases with x/d such that the maximum ∆/η is 0.1 at x/d = 1 and

marginally increases to ≈ 0.8 at x/d = 5. Further downstream, the maximum ratio remains below

1 until x/d = 20. My grid resolution (Figure 3.9) follows these criteria stringently in the critical

regions of the flow such that ∆/η does not exceed 1 for the entire domain. This confirms the

adequacy of the numerical results.

Moderate Reynolds number flow

Since Large Eddy Simulations were utilized at moderate Reynolds numbers, it became essential to

verify the numerical setup. For this purpose, the case of a wall-mounted long prism (DR = 4) at

Reynolds number of 2.5×103 was selected. LES results were verified by evaluating the sensitivity

of results to domain size and grid resolution. The domain development criteria followed those
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Table 3.2: Domain and grid sensitivity analysis results for wall mounted prism with DR = 4 at
Re = 2.5×103. The relative error is calculated with respect to Domain 2 and Grid 4, respectively.

Study Ntotal Domain Size y+max Cd |∆Cd%| Cl |∆Cl%|
Domain 1 17.3×106 30d ×5d ×10d 0.8 1.102 5.60 0.921 5.14
Domain 2 19.6×106 30d ×6d ×12d 0.8 1.041 − 0.875 −
Domain 3 20.9×106 35d ×6d ×12d 0.8 1.043 0.19 0.876 0.10

Grid 1 5.1×106 30d ×6d ×12d 3.1 1.100 5.51 0.914 5.33
Grid 2 15.1×106 30d ×6d ×12d 1.55 1.061 2.36 0.899 3.55
Grid 3 19.6×106 30d ×6d ×12d 0.8 1.041 0.38 0.875 0.90
Grid 4 25.2×106 30d ×6d ×12d 0.44 1.037 − 0.868 −
Time 1 25.2×106 30d ×6d ×12d 0.44 1.037 − 0.868 −

discussed earlier in this section. Moreover, based on the practices of Sohankar et al. (1998) and

Saha (2013), blockage ratio (β ) and Domain height (H) were set as 0.01 and 6d, respectively,

following the criterions of

β = (d ×h)/(W ×H)≤ 0.05 & H ≥ h+5d,

to ensure negligible effects of domain on global flow features.

Grid sensitivity was assessed using four successively refined grids with 5.1×106, 15.1×106,

19.6×106, and 25.2×106 elements. Sensitivity of the domain size and grid distribution on global

flow features, e.g., mean drag (Cd) and lift coefficients (Cl), were evaluated. The results in Table 3.2

indicates that Domain 2 (30d ×6d ×12d) is sufficient. Relative errors in Cd and Cl between Grid

3 and Grid 4 were below 1%, indicating grid convergence for Grid 3 as presented in Table 3.2. As

such, Domain 2 and Grid 3 were selected for further analysis.

Sensitivity analysis were expanded to the mean and turbulent flow characteristics simulated

using LES. The results are presented in Figure 3.10. Comparing profiles of u and u′u′, a close

agreement is noted between Domain 2 and Domain 3, at x/d = 1 downstream of the prism for

all domain sizes. The influence of blockage is further apparent in Domain 1, where the centerline

velocity is significantly higher compared to other domains. Based on these results, it was confirmed
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Figure 3.10: Effect of (a, b) Domain and (c, d) Grid sizes on mean and turbulent wake
characteristics. Shown are (a, c) u and (b, d) u′u′.

that Domain 2 was sufficient to capture wake characteristics. Similarly, the grid sensitivity analysis

revealed that Grid 3 was sufficient to capture the wake characteristics with negligible influence of

further grid refinement. The results in Figure 3.10c and 3.10d indicate an excellent agreement

between Grid 3 and Grid 4 with a maximum of 1% deviation. The results of the grid and domain

sensitivity analysis confirm that selected domain and grid sizes are sufficient to capture the wake

characteristics at moderate Reynolds numbers. Finally, a temporal grid sensitivity analysis was

performed using two time steps: Grid 4 (∆t∗ = 0.001) and Time 1 (∆t∗ = 0.0005). The results in

Table 3.2 show that Strouhal number and mean drag coefficient were consistent between Grid 4
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(a) (b)

(c) (d)

Figure 3.11: Contours of (a, b) instantaneous and (c, d) time-averaged (mean) distributions of the
ratio of grid size to Kolmogorov length scale (∆/η) in the (a, c) symmetry plane (z/d = 0) and (b,
d) x-z plane (y/d = 0.5) for the case of DR = 4 at Re = 2.5×103.

(a) (b)

Figure 3.12: Contours of ratio between time-step (∆t) and the Kolmogorov time scale (τη ) for the
instantaneous flow field in the (a) symmetry plane (z/d = 0) and (b) x-z plane (y/d = 0.5) for the
case of DR = 4 at Re = 2.5×103.

and Time 1. Negligible variations were noted, indicating that the temporal resolution of Grid 4 was

sufficient for simulations at Reynolds numbers between 1×103 and 5×103.

The analyses in this thesis demands accurate resolution of the smallest resolvable flow

features, such as the leading-edge shear-layer and KHI. To this end, grid size should be
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Figure 3.13: Histogram of the (a) ratio of grid size to Kolmogorov length scale (∆/η) and (b)
ratio of time-step size to the Kolmogorov time scale (τη ) for the case of DR = 4 at Re = 2.5×103.
Histogram is presented for the instantaneous flow field in the entire computational domain.

comparable to Kolmogorov length scale (Moin and Mahesh, 1998). Therefore, ratio of grid size

(∆) to Kolmogorov length scale (η) was analyzed for further verification. Contours of ∆/η in

Figure 3.11 show that both instantaneous and time-average (mean) values of ∆/η fall within the

required range of 5−10 discussed earlier. Particularly, ∆/η is smaller than 5 in the mean, while it

is greater than 5 in the unsteady flow. Maximum value of ∆/η is ≈ 8.6 at x/d = 15, with ∆/η

between 1 and 3 in the immediate vicinity of the prism. Probability density histogram of ∆/η for

the entire computational domain is presented in Figure 3.13a. Results further confirms that the

majority of the flow was resolved with ∆/η < 5. Further, the maximum values of ∆/η is 8.6, well

within the range of 5− 10 (Yakhot et al., 2006; Saeedi et al., 2014; Celik et al., 2009; Rastan

et al., 2021). The mean value of ∆/η is ≈ 0.96, which fits well within the ratio suggested by

Cimarelli et al. (2018), indicating that the grid resolution was sufficient to capture the transitional

mechanisms and shear-layer instabilities of the leading-edge shear-layer. Together, the results of

∆/η indicated that resolution of Grid 3 was sufficient to capture critical flow features behind the

wall-mounted prism at moderate Reynolds numbers.
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Closeness between the smallest resolved time-scales and Kolmogorov time-scale (τη )

determines the accuracy in resolving the fluctuations in turbulent flow (Moin and Mahesh, 1998;

Li et al., 2020). As such, the ratio between time step size (∆t) and Kolmogorov time-scale, given

as τη = (ν/ε)1/2, is evaluated to confirm the validity of the numerical setup. This analysis

complemented the temporal grid sensitivity study discussed earlier. Li et al. (2020) had suggested

that the mean time ratio (∆t/τη ) should be less than 0.0205 for finely resolved time-scale

corresponding to ≈ 50 eddy-turnover times. Moreover, Duong et al. (2024) suggested the ratio

remain in the range of 0.02 ≤ ∆t/τη ≤ 0.05 near the leading-edge and side shear layers. Contours

of ∆t/τη are presented in Figure 3.12 and the Probability density of ∆t/τη in the entire

computational domain is presented in Figure 3.13b. Results in Figure 3.13b show that the

maximum and mean values of ∆t/τη are 0.08 and 0.01, respectively, indicating that the time-step

size was well within the range suggested by Li et al. (2020). Further, majority (∼ 95%) of the

computational domain had ∆t/τη < 0.02, while only ∼ 0.5% area confined to the leading-edge of

the prism showed 0.02 ≤ ∆t/τη ≤ 0.06. As shown in Figure 3.12, ∆t/τη ≈ 0.05 in the immediate

vicinity of the prism, with average ∆t/τη ≈ 0.01 in the wake region. ∆t/τη distribution, following

the criterion of Li et al. (2020) and Duong et al. (2024), confirmed that temporal grid resolution

was sufficient to capture the small-scale turbulent fluctuation in this dissertation.

3.7 Validation Studies

Verification studies presented in the previous section provided an accurate and optimized

numerical setup to evaluate the wake dynamics of wall-mounted prisms at low and moderate

Reynolds numbers. Validation was performed to ensure that this numerical setup accurately

captured the wake dynamics around wall-mounted prisms.



Chapter 3. Methodology 70

(a) (b)

Figure 3.14: Time-averaged (a) streamwise and (b) spanwise velocity distributions at Re = 2.5×
102, behind a rectangular prism with AR = 4 compared with DNS result of Zhang et al. (2017) and
Saha (2013).

Low Reynolds number flow

There have been several attempts to validate numerical results from OpenFOAM in

literature (Robertson et al., 2015; Verma and Hemmati, 2020; Goswami and Hemmati, 2020; Ren

et al., 2022). The current numerical set-up at low Reynolds numbers were compared with

validated numerical studies of Saha (2013) and Zhang et al. (2017). This is due to limited

experimental analysis at low Reynolds number range and varying depth-ratios. Since there are no

comprehensive studies, to the best of my knowledge, on the wake of prisms with varying

depth-ratios at low Reynolds numbers (Re ≤ 103), Figure 3.14 presents a comparison with well

established DNS results in literature for validation of the numerical setup. Figure 3.14 compares

time-averaged streamwise and spanwise velocity distributions behind a rectangular prism with

aspect-ratio 4 at Reynolds number of Re = 2.5× 102, which was studied by Zhang et al. (2017)

and Saha (2013) using DNS. Profiles in Figure 3.14 collapse well, showing only small

discrepancies in the streamwise velocity deficit. These results confirm that the numerical setup

accurately captures the wake dynamics of wall-mounted prisms at low Reynolds numbers.
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Figure 3.15: Comparison of (a) mean axial velocity (u) and (b) root-mean-squared velocity (u′rms)
profiles obtained from LES with the experimental results of Saeedi et al. (2014).

Moderate Reynolds number flow

Lack of experimental data for the specific case of a prism with DR = 4, Re = 2.5×103, demanded

an alternative validation approach that mimicked the setup of Saeedi et al. (2014) for the case of

AR = 4 prism at Re = 1.2×105 using LES. LES grid resolution and computational setup mirrored

that presented in this dissertation. Mean axial velocity profiles from LES agreed well with Saeedi

et al. (2014), such that less than 5% deviation (Figure 3.15a) was noted between experiments

and numerical simulations. Figure 3.15b further shows satisfactory agreement between LES and

experimental results in capturing the root-mean-squared velocity profiles. Further, the trends at the

peak and into the wake were well reproduced by numerical simulations. This outcome validated

the LES numerical setup.

3.8 Assessment of Wake Dynamics

The main objective of this dissertation requires qualitative and quantitative assessment of a

complex wake flow. Qualitative methods include visualizing wake features using two- or

three-dimensional iso-contours of Q−criterion (Jeong and Hussain, 1995). Quantitative methods
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include characterizing the wake using vortex circulation (Godoy-Diana et al., 2009), transport of

mean shear-layers (Smits et al., 2019b), and recovery of momentum (More et al., 2015). Further

data-driven quantitative assessment of coherent structures is performed using Dynamic Mode

Decomposition (DMD) (Schmid, 2010) and Bi-Spectral Mode Decomposition (Schmidt, 2020).

3.8.1 Assessing the strength of vortex

Distribution of axial vorticity (ω∗
x ) and spanwise vorticity (ω∗

z ) provides deeper insight into the

cross-sectional wake topology and axial wake features. Past wake studies have utilized circulation

(Γ) to assess the strength and size of vortices in the wake (Godoy-Diana et al., 2009; Verma and

Hemmati, 2021; Zargar et al., 2022b). Mathematically, circulation (Γ) is calculated using the

line-integral of velocity along a closed curve encompassing the vortex, or by area-integral of

vorticity (Godoy-Diana et al., 2009), given as:

Γ =

¨
A
(∇×u) ·dA, (3.17)

where A is the surface area bounding the vortex. Godoy-Diana et al. (2009) has shown the

discrepancy in line-integral based methods, involving spurious contribution of opposite signed

vortices in the integral. Thus, the area-integral based method is used in this thesis, which uses a

rectangular integration window constructed over the the contour plot of vorticity surrounding the

vortex. Center of the window denotes the location of maximum or minimum vorticity for

anti-clockwise or clockwise rotating structures, respectively. A Gaussian-fit centered at the

location of minimum or maximum vorticity corresponds to e−(xi/σi), where σi denotes the

standard deviation of vorticity. Size of the vortex is quantified as 2σi, and circulation (Γ) is

calculated by area-integral over a rectangular window within 2σi.
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3.8.2 Dynamic Mode Decomposition (DMD)

Physical mechanisms underlying the flow relies on spatio-temporal characterization of coherent

structures in the wake, especially for a complex system, i.e., flow around a wall-mounted

prism (Schmid, 2010). This thesis utilizes DMD to investigate complex flow behavior around a

wall-mounted prism, which enables identifying spatial structures with characteristic frequencies

associated with them. Thus, it provides a spatio-temporal characterization of the wake. The

general description of the flow is given by a time series:

xt = Axt−1 + r, (3.18)

where xt denotes the snapshot vector in time, t, and A is the linear mapping coefficient vector.

Snapshots are assumed to be related via the linear mapping coefficient (A):

X2 = {x2,x3, . . . ,xt} ≈ A{x1,x2, . . . ,xt−1}= AX1. (3.19)

Thus, temporal dynamics of the flow can now be analyzed using eigenvalue analysis. DMD uses

Koopman algorithm to approximate the coefficient matrix (Schmid, 2010), based on which

Singular Value Decomposition (SVD) is performed on the matrix (X1):

X1 =USV T , (3.20)

where U and V are the left and right singular vectors, and S is the diagonal matrix composed of

the singular values. This is followed by computing the Koopman matrix using truncated SVD:

Ã =UT
r X2VrS−1

r . (3.21)

Finally, computation of the eigenvalue decomposition of the Koopman matrix is performed by

Ã = QΦQT , (3.22)
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where Q consists of eigenvectors and Φ consists of eigenvalues. Dynamic modes, or DMD modes,

are eigenvectors. Thus, DMD analysis enables segregating the induced effects of each frequency

on the overall wake by reconstructing the wake using these modes.

In this study, a total of 310 three-dimensional, high-fidelity numerical simulations were

conducted to investigate the wake dynamics and vortex interactions behind wall-mounted prisms.

These simulations were performed using OpenFOAM CFD toolbox. The simulations varied

across a range of depth-ratios, aspect-ratios and Reynolds numbers, providing a comprehensive

dataset to analyze and understand the wake dynamics of wall-mounted bluff bodies. The results

of these simulations are presented in the following chapters.
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Chapter 4

WAKE ASYMMETRY AND SECONDARY

STRUCTURES BEHIND

WALL-MOUNTED PRISMS
‡

Depth-ratio (length-to-width) of wall-mounted prisms with small aspect-ratio (height-to-width) is

a critical parameter influencing instantaneous wake dynamics and downstream wake topology.

Among the limited studies addressing depth-ratio effects (see Section 2.2), the emphasis has

primarily been on wake topology and force characteristics. Detailed analyses of near-wake

instabilities, both low- and high-frequency processes (Morton et al., 2018; Kindree et al., 2018),

are notably absent. These instabilities are fundamental to understanding wake dynamics,

particularly the transition from steady to unsteady wake regimes (Section 2.2). Furthermore, they

lead to the formation of secondary vortex structures alongside coherent structures such as

arch-type, Kármán-type, or hairpin-like vortex shedding (Diaz-Daniel et al., 2017a). For

wall-mounted finite prisms, there is no clear consensus on the terminology or interactions of

secondary vortex structures. Previous studies, summarized in Section 2.2, have described these

‡The content of this chapter has been published in Journal of Fluid Mechanics under the citation (Goswami and
Hemmati, 2022): “Goswami, S., & Hemmati, A. (2022). Mechanisms of wake asymmetry and secondary structures
behind low aspect-ratio wall-mounted prisms. Journal of Fluid Mechanics, 950, A31”.
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structures in terms of time-averaged streamwise vortices observed in the wake. However, the

interaction between secondary vortex structures and shedding coherent structures remains largely

unexplored.

This chapter investigates the wake of wall-mounted prisms with small aspect-ratio and

varying depth-ratio, focusing on wake asymmetry and secondary structures. The primary

objective is to identify the mechanisms governing wake asymmetry and secondary structures,

with an emphasis on transition processes across different depth-ratios and Reynolds numbers.

The study examines prisms with AR = 1 and DR = 0.016− 4 at Re = 5× 101 − 5× 102. These

prisms are immersed in a laminar boundary layer, with the minimum depth-ratio representing a

thin wall-mounted prism, analogous to a flat plate. This configuration enables the exploration of

wake evolution mechanisms, including free-end effects and shear-layer dynamics, in prisms with

small aspect-ratios. This chapter is structured such that the Results and Discussion are presented

in Section 4.1, followed by a summary of the key findings in Section 4.2.

4.1 Results and Discussion

The classification of the wake topology as steady or unsteady is conducted across a range of

Reynolds numbers and depth-ratios. Here, steady wake is defined by the absence of any

fluctuations in either wake or forces, whereas unsteady wakes feature small and large wake

variations and force fluctuations. A wake map is presented in Figure 4.1 for wall-mounted prisms

of different depth-ratios at different Reynolds numbers. Here, the wake is classified as either

steady or unsteady, which is further sub-divided into symmetric and asymmetric wakes. For

clarity, symmetric wakes are defined by the symmetric orientation of the main instantaneous wake

features about the mid-planar axis, such as hairpin-like structures, tip and base vortices, as well as

the horseshoe vortex. Contrarily, asymmetric wakes exhibit vortical features with periodic

distortions about the mid-planar axis, leading to side-way (spanwise) tilting of shed structures.

This highlights a change in wake topology that closely depends on the prism depth-ratio at a
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range of Reynolds numbers for a low aspect-ratio body. Particularly, results in Figure 4.1 indicate

that the wake is steady for DR= 0.016 until Re = 1.5×102, after which it becomes unsteady. The

Reynolds number at which this wake transition occurs increases with increasing depth-ratio, such

that the wake remains steady up to Re = 2× 102 for DR = 0.1 and Re = 4× 102 for DR = 1. In

previous studies, the unsteady wake transition as a function of Reynolds number is mainly

discussed with increasing aspect-ratios. Saha (2013) identified transitional flow at Reynolds

number of 2.5 × 102 for AR = 2 prism, while Zhang et al. (2017) identified similar unsteady

transition for AR = 4 prism at Reynolds number of 1.5×102. In case of wall-mounted cube, this

transition was noted at Re = 5× 102 (Diaz-Daniel et al., 2017b). This dissertation scrutinizes

such transition as a function of Reynolds number and depth-ratios. Further classification of the

unsteady wake also reveals interesting topological differences that are identified in terms of wake

symmetry, or there lack of. This study only focus on identifying and characterizing the wake

mechanism at Reynolds number of 250 and 500, since the wake remains coherent without

three-dimensional turbulent effects that could complicate the flow at high Reynolds

numbers (Saha, 2013; Zargar et al., 2021a). Moreover, this Reynolds number exhibits both

categories of unsteady wake, the mechanisms associated with which are important in

development of the wake topology. However, discussions on changing wake topology with

Reynolds number and depth-ratio form the basis of a future study.

The instantaneous wakes are characterized starting with the lowest depth-ratio (DR= 0.016) at

Re= 2.5×102. There exists a wake unsteady transition with increasing depth-ratio at this Reynolds

number. The wake is unsteady for DR ≤ 0.1 and it transitions to a steady wake for DR = 0.3−4.

Moreover, the wake of the very thin prism exhibits unique features at Re = 2.5× 102, leading

to asymmetric characteristics. These were not observed at lower Reynolds numbers or for larger

depth-ratios. The characterization of these wake features are initially discussed in the next section,

followed by analyzing the mechanisms associated with the wake development for low depth-ratio

prisms, i.e., DR ≤ 0.1, and characterizing secondary structures in the wake in latter sections.
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Figure 4.1: Classification of the wake topology in terms of Reynolds number and depth-ratio.

4.1.1 Wake Classification

The wake classification in Figure 4.1 identifies that Reynolds number threshold for transition to

unsteady wake increases with increasing depth-ratio. It becomes clear that the wake is steady for

all depth-ratios at Re ≤ 1.5 × 102. With further increase in Reynolds number to 2 × 102, a

transition to unsteady wake occurs for DR = 0.016, while the wake of DR ≥ 0.1 remains steady.

At Re = 2.5 × 102, the wake transitions from unsteady to steady with changing depth-ratio.

Moreover, wake of the very thin prism exhibits asymmetric characteristics, which changes to

symmetric shedding, followed by a steady wake at larger depth-ratios. Although it is important to

identify how wake topology changes with increasing Reynolds number and depth-ratio, and the

correspondence between the two parameters, this analysis falls outside the scope of the current

study. Instead, this study only focuses on identifying and characterizing the wake at

Re = 2.5 × 102, as well as the mechanism of asymmetric wake patterns that are observed at

Re ≥ 2.5 × 102. To this effect, analysis of the wake of our thin prism (DR = 0.016) at

Re = 2.5× 102 is first performed, which is the onset of wake asymmetry. Please note that our

analyses are also valid for larger depth-ratios or Reynolds numbers, as long as the wake

classification remains the same as that identified for the thin prism at the given Reynolds number.
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Figure 4.2: Instantaneous vortex structures of DR = 0.016 prism identified using Q∗ = 6×10−6

and overlaid with mean streamwise velocity (u/Ub), at (a) Re = 1.5× 102; (b) Re = 2× 102; (c)
Re = 2.5×102; and (d) Re = 5×102. All figures are shown in three-dimensional view.

Figure 4.2 shows the wake topology behind the very thin prism (DR = 0.016) over the range

of Re = 1.5 × 102 − 5 × 102. These results identify a clear change in wake topology with

changing Reynolds number. The case of very thin prism is selected because it clearly marks the

onset of unsteady wake, as well as transition from symmetric to asymmetric wake characteristics

Similar analyses can be undertaken for any other depth-ratio and Reynolds number cases, and

similar observations are expected for the same wake topology (classifications based on Figure

4.1). Unsteady wake structures, their formation, evolution and interactions are investigated using

the Q−criterion, as described by Hunt et al. (1988) and Jeong and Hussain (1995). Iso-surface

plots overlaid with mean streamwise velocity (u/Ub) contours in Figure 4.2 demonstrate the

transition of wake features with changing Reynolds number for DR = 0.016. At Re ≤ 1.5× 102,

the wake remains steady, and the formation of horseshoe vortex (Simpson, 2001) and
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leading-edge shear layer separation is clear. The onset of unsteady wake occurs at Reynolds

number of 2 × 102, which is characterized by formation of symmetric hairpin-like vortices.

Diaz-Daniel et al. (2017b) reported similar symmetric wake structures behind a cube. They

attributed the symmetric shedding to the interaction of tip vortices, formed at the upper-part of

prism side surfaces, with the shear-layer created over the prism, leading to flow unsteadiness.

Further increase in Reynolds number to 2.5 × 102 leads to asymmetric hairpin-like wake

structures. At Re = 5× 102, the wake of very thin prism, although unsteady and asymmetric,

cannot maintain its coherence far downstream. This could be attributed to stronger interactions

between the shed structures, as a result of increased unsteadiness (Diaz-Daniel et al., 2017b;

Zargar et al., 2021a). Here, the wake asymmetry is characterized by distortion of the head of the

hairpin-like structure, which leads to spanwise (side-way) tilting of structures, as noted in

Figure 4.2c. Identifying the wake features that are altered by the changing depth-ratios and

characterizing secondary structures and their interactive mechanisms with the wake forms the

basis of our analyses for the remainder of this paper.

Since the onset of asymmetric wake occurs at Re = 2.5×102, this study looks at instantaneous

streamwise vorticity (ωx
∗) contours for the case of very thin prism at Re = 2.5×102 and 5×102

in Figure 4.3. These results enable us to investigate the formation, interaction and distortion of

near-wake vortical structures. There are three main observations that can be discussed with respect

to the results in Figure 4.3. First, the wake appears symmetric in the immediate vicinity of the

prism at x/d = 0. Two pairs of counter-rotating tip vortices are noted here, with primary tip vortex

forming on top part of the prism side surface, and secondary tip vortex forming on the prism top

surface. This is consistent with the wake topology of wall mounted prisms (Rastan et al., 2021).

The second observation is that near-wake structures lose streamwise coherence due to stronger

interaction between shed structures and increased unsteadiness with increasing Reynolds number

towards Re= 5×102. As such, structures at x/d = 1 for Re= 5×102 appear distorted compared to

Re= 2.5×102. The third observation relates to an influx of vorticity at x/d = 2, which corresponds

to the formation of secondary vortex structures in the wake. These secondary structures appear
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Figure 4.3: Contours of instantaneous streamwise vorticity (ωx
∗) structures (solid blue lines:

positive values, dashed red lines: negative values) for DR = 0.016 at (a-c) Re = 2.5×102 and (d-f)
Re = 5× 102. The line contour cutoff levels for ωx

∗ are ±0.12 and the contour interval is 0.001.
The contours are shown at x/d = 0,1 and 2.

distorted at higher Reynolds numbers, compared to Re = 2.5× 102, possibly due to incoherent

interactions with the separating shear-layers from the prism top and side surfaces (Diaz-Daniel

et al., 2017b). These secondary structures also appear in case of symmetric unsteady wakes (i.e.,

DR = 0.1 at Re = 2.5× 102 in Figure 4.21), in which case they are placed symmetrically in the

wake. Thus, this study expand on the previous investigation of the mechanism of wake asymmetry

based on these observations focusing on the case of Re = 250, which enables characterization of

wake devoid of major incoherent, transient effects.

Finally, it becomes important to scrutinize variations in flow dynamics at higher depth-ratios

for the given ranges of Reynolds numbers for completeness. Figure 4.1 reveals that the unsteady

asymmetric wake exists for DR = 0.9 at Re = 4× 102, while it vanishes for Reynolds number of

5×102. It is evident from the iso-surface plots shown in Figure 4.4 that DR= 1 at Reynolds number

of 5× 102 results in asymmetric unsteady wake, which quickly becomes steady with increasing
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number of 5× 102, identified using Q∗ = 6× 10−6 and overlaid with mean streamwise velocity
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Figure 4.5: Trends of drag coefficient (Cd) with varying depth-ratios and Reynolds numbers.

depth-ratio to 1.5. Trailing edge flow separation as a result of shear-layer reattachment on the prism

top and side surfaces for large depth-ratio (DR≥ 1) prisms lead to the suppression of unsteady flow

characteristics (Zargar et al., 2021b; Rastan et al., 2021). For the present study, Figure 4.4 shows

trailing-edge flow separation for the case of DR = 1.5 at Re = 5×102, resulting in steady flow.
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Figure 4.5 illustrates the variation of drag coefficient with changing depth ratio (DR) and

Reynolds numbers. For DR ≤ 1, drag coefficient increases with Reynolds number, likely due to

enhanced flow separation and increased pressure drag, as inertial effects dominate. Conversely,

drag coefficient decreases with Reynolds number at DR > 1, which is attributed to an increased

recirculation length and steady flow. These findings align with the results of Zargar et al. (2021b),

who observed similar trends for wall-mounted long prisms. While the present study does not

establish a direct correlation between drag and wake topology, it emphasizes identifying the

mechanisms governing wake transitions and vortex interactions. These interactions, particularly

vortex shedding and recirculation dynamics, play a crucial role in shaping the wake behavior of

wall-mounted prisms with small aspect ratios, providing insights into their aerodynamic

characteristics and flow-induced forces.

4.1.2 Instantaneous wake characteristics

Wake analysis is performed by looking at the asymmetric unsteady wake formation at Re = 2.5×

102. Iso-surface plots are overlaid by the mean streamwise velocity (u/Ub) contours in Figure 4.6,

which demonstrate a difference in the wake with changing depth-ratio. The wake of prisms with

DR = 0.016 and 0.1 is unsteady at Re = 2.5×102, while that of DR ≥ 0.3 is steady. This indicates

an unsteady-to-steady transition of the flow with increasing depth-ratio. The two common features

of the wake, for all the cases considered here, are the formation of horseshoe vortices in front of the

prism, and the shear layer separation at the leading edge. The latter folds after the initial separation

on top and side surfaces of the prism as the depth-ratio increases. Hereinafter, the focus of this

thesis will be on the unsteady wake features, their formation mechanisms, unique characteristics,

and potential sources.

The flow around a wall-mounted prism with a very small depth-ratio (DR< 0.3 at Re = 2.5×

102) experiences shear-layer separation and roll-up, leading to vortex shedding. The wake of such

prisms are dominated by hairpin-like vortices that are formed along the top face of the prism. These

are clearly identified in Figures 4.6a and 4.6b. This is consistent with observations of Hemmati
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Figure 4.6: Instantaneous vortex structures identified using Q−criterion and overlaid with mean
streamwise velocity (u/Ub), for (a) DR = 0.016; (b) DR = 0.1; (c) DR = 0.3; (d) DR = 1; (e)
DR = 2 and (f) DR = 4, at Reynolds number of 2.5×102. The threshold of Q∗ = 6×10−6 is used
for DR = 0.016,0.1,1−4, while Q∗ = 1×10−6 is used for DR = 0.3 to avoid distorted contours.
All figures are shown in three-dimensional view.

et al. (2016), who identified the wake of a finite aspect-ratio normal thin flat plate is dominated by

vortex loops that are shed on the longer edges with legs that are “peeled-off” from the side (shorter)
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edges. Here, head of the hairpin-like structure moves faster downstream compared to its legs.

Thus, wake structures appear elongated or distorted in the streamwise direction. This observation

is consistent with the fact that head of the hairpin is closer to the free-stream, while the legs are

located closer to the boundary layer on the ground. Further, shedding of hairpin-like structures

changes from asymmetrically to symmetrically placed hairpins with increasing depth-ratio from

0.016 to 0.1. This hints at the implications of depth-ratio in restoring the flow symmetry (Diaz-

Daniel et al., 2017b), which remains prevalent for DR ≥ 0.3 (steady cases).

Hairpin-like structures were symmetrically placed due to the flow separation-reattachment

process on the prism top surface at depth-ratio of 0.1, which is consistent with the results of

Hwang and Yang (2004), Yakhot et al. (2006), and Diaz-Daniel et al. (2017b) for a cube. Here,

the results thus far clearly identify that wake of a small aspect-ratio prism with a very small

depth-ratio is asymmetric at Re = 2.5× 102, while wake symmetry is restored with reattachment

of the shear layer on the body with increasing depth-ratio. In simpler terms, evidence is provided

in this thesis that increasing the depth-ratio leads to the restoration of flow symmetry in small

aspect-ratio prisms.

The steady wake observed for cases of DR ≥ 0.3 in Figures 4.6c-4.6f exhibit initial flow

separation on leading edge of the prism that is followed by a shear layer reattachment on top and

side faces. This process suppresses the wake three-dimensionality and unsteadiness according to

Zargar et al. (2021a) and Rastan et al. (2021). Two aspects of flow separation are observed in the

steady wake. First, a pair of tip and base vortices are identified in Figure 4.6c (DR = 0.3), which

are either not formed or quickly distorted for DR > 0.3 in Figures 4.6d-4.6f. The existence of tip

vortices for DR= 0.3 hints at the dominance of downwash induced flow, based on the discussions

of Zargar et al. (2021b), which intensifies with increasing depth-ratio. Traces of tip vortices are

missing for the case of DR > 0.3 in Figures 4.6d-4.6f, which is attributed to folding of initial

shear-layer separation on the surfaces of the prism. The second feature of the wake involves an

initial shear layer separation and reattachment on top and side surfaces of the prism for DR > 0.3,

which is followed by trailing edge separation. This leads to the shear layer roll up and the
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Figure 4.7: Instantaneous vortex structures identified using Q∗ = 6×10−6 for (a) DR = 0.016 and
(b) DR = 0.1, at Reynolds number of 2.5×102. Figures are presented from top view.

formation of trailing edge vortices, identified as “V ′′
1 and “V ′′

2 in Figures 4.6d-4.6f on the prism

top and side wakes, respectively. These trailing edge vortices entrain free-stream fluid into the

wake, thus leading to intense downwash flow behind the prism. This is well aligned with

previously reported observations of Zargar et al. (2021b) on the steady wake of long rectangular

wall-mounted prisms.

Another important feature of the flow is the formation of a multi-part horseshoe structure at

the base of the prism leading edge. For DR < 0.3, the legs of outer horseshoe are shed into

the wake by forming hairpin-like structures. These structures are clearly identified in Figure 4.7.

The formation of these hairpin-like structures has been previously reported in literature, which

may be associated with vortical motions of the horseshoe vortex legs. Hwang and Yang (2004)

and Diaz-Daniel et al. (2017b) reported the shedding of horseshoe vortex in the wake of a wall-

mounted cube at Re = 6× 102. They suggested that the flow region around the horseshoe vortex

is fundamentally similar to a quasi-streamwise vortex from the near-wall region of a turbulent

wall-bounded flow. Hence, the hairpin structures were reasonably expected in this region, similar

to those discussed by Adrian (2007). What is unique in the current study, however, is observing

an asymmetric pattern for horseshoe-hairpins in Figure 4.7a (for DR = 0.016), while they are

placed symmetrically around the prism for DR = 0.1. The horseshoe-hairpins for the former prism

(DR = 0.016) are stretched as they progressed downstream, similar to the primary hairpin-like
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vortices. Structures on either side of the prism appear distorted following the initial shedding close

to x/d = 3. This coincides with their lower convective speed, which in turn leads to a small phase

difference at x/d = 9. In case of DR = 0.1, however, no such phase difference exists, and the

hairpins are symmetrically placed around the prism. The investigation of phase difference in the

unsteady case is completed in the later part of the paper.

Expanding these studies to higher Reynolds numbers, i.e., the results in Figure 4.1, revealed

that threshold depth-ratio, at which wake symmetry is restored, increases with increasing Reynolds

number. This constitutes the effect of Reynolds number on wake transition mechanisms, which

falls outside the scope of the current study. Nonetheless, a brief report on the transition mechanisms

investigated in past literature is provided. The fundamental mechanism of wake transitions, that

is the suppression of unsteadiness and restoration of wake symmetry, is a multivariate function.

Wake transitions depend on flow parameters, such as Reynolds number, boundary layer thickness,

and changing geometric parameters, e.g., aspect-ratio and depth-ratio. Past literature have focused

on wake transition mechanisms in case of suspended cubes (Saha, 2004; Khan et al., 2020a; Meng

et al., 2021) as well as wall-mounted prisms (Saha, 2013; Zhang et al., 2017; Rastan et al., 2017;

Diaz-Daniel et al., 2017b). For the case of suspended cube, Hopf bifurcation (Saha, 2004; Khan

et al., 2020a) results in transition to unsteady flow, mainly at Reynolds numbers of 2.5× 102 −

3× 102. In case of wall-mounted prisms, transition is mainly investigated in terms of changing

aspect-ratio (Saha, 2013) and Reynolds numbers (Zhang et al., 2017; Rastan et al., 2017; Diaz-

Daniel et al., 2017b). Saha (2013) attributed the transition to unsteady flow with increasing aspect-

ratio, to alternate shedding of side-edge shear-layers forming Kármán type mid-span vortices.

Saha (2013) observed transition to unsteady flow at aspect-ratio of 3 and Reynolds number of

2.5×102. Thereon, Zhang et al. (2017) and Rastan et al. (2017) observed transition in mean-wake

topology with changing Reynolds number. Zhang et al. (2017) notably observed a six-vortex type

cross-sectional wake topology, considered to be a transitional structure between quadrupole and

dipole-type wakes, at Reynolds number of 2.5×102. Finally, Diaz-Daniel et al. (2017b) attributed

the transition to unsteady wake to destabilizing of leading edge shear-layers. In context of this
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dissertation, suppression of unsteadiness with increasing depth-ratio is noted, leading to restoration

of flow symmetry and steady wake. Further, the threshold for transition changes with Reynolds

number as observed in Figure 4.1. Thus the transition mechanism here becomes a multivariate

function of changing depth-ratio and Reynolds number, which is discussed more as part of a future

study.

4.1.3 Time-averaged wake characteristics

While the analysis of time-averaged flow effects and influence of changing depth-ratio and

Reynolds numbers remain out of scope for the present study, the characterization of

time-averaged flow features becomes important to understand the flow dynamics around

wall-mounted prisms. Thus, the time-averaged (mean) wake features with changing depth-ratios

are characterized briefly here. Time-averaged vortex structures identified using Q−criterion and

overlaid with time-averaged axial vorticity (ωx
∗) are presented in Figure 4.8, for prisms with

changing depth-ratios at Reynolds number of 2.5 × 102. A sub-plot showing iso-surfaces of

streamwise axial vorticity is added on the top-right corner for each plot. Figure 4.8 shows that the

time-averaged wake is symmetric for all cases, including DR = 0.016, in which the instantaneous

unsteady wake feature asymmetric hairpin-like structures. Further, the time-averaged vortex

structures for DR < 0.3 show quadrupole-type cross-sectional wake topology, composed of

counter-rotating pairs of primary tip and base vortices, emanating from the tip and base of the

prism, respectively. In literature, Zhang et al. (2017) and Zargar et al. (2021b) observed similar

quadrupole structures at Reynolds number of 2.5× 102. Increasing the prism depth-ratio beyond

0.3 leads to impairment of tip vortex due to reattachment of leading edge separated flow into top

and side surfaces of the prism (Rastan et al., 2021).

The iso-surfaces of vorticity, shown on the top-right corner for each plot in Figure 4.8 provides,

insight into the formation of tip vortices and their dependence on depth-ratio. Two vortices forming

over the top surface of the prism are primary and secondary tip vortices. Primary tip vortices form

on the top part of the side surfaces, while secondary tip vortices form on the top surface of the
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Figure 4.8: Time-averaged vortex structures identified using Q∗ = 1× 10−6, colored with ωx
∗

for (a) DR = 0.016; (b) DR = 0.1; (c) DR = 0.3; (d) DR = 1; (e) DR = 2 and (f) DR = 4. The
iso-surface for ωx∗ is shown for each case on the top-right corner.

prism (Rastan et al., 2021). For all cases, secondary tip vortices vanish immediately behind the
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prism. In case of DR > 0.3, secondary tip vortices vanish due to shear-layer reattachment on the

top-surface of the prism, while primary tip vortices swerve down the side surfaces.

Finally, in order to understand the evolution of time-averaged structures in near and far-wake

downstream of the prism, Figure 4.9 presents profiles of time-averaged axial vorticity (ωx
∗) at

x/d = 2,5 and 10. Profiles for DR > 1 are omitted for brevity, since their mean flow characteristics

do not change compared to DR = 1(Fang and Tachie, 2019; Zargar et al., 2021b). At x/d =

2, the profiles of ωx
∗ are similar for DR ≤ 0.3, showing the pairs of primary and secondary tip

vortices, and base vortex pairs. The horseshoe structure wrapping around the prism and extending

in the wake is also apparent. The sign of vorticity for primary tip vortices are opposite to those

of secondary tip vortices. The latter structures diminish beyond x/d = 2 and they are no longer

identifiable at x/d = 5. Thus, secondary tip vortices only appear in the near-wake, while primary

tip vortices and base vortices retain their coherence farther downstream the wake. The strength

of tip and base vortices reduces with increasing depth-ratio farther downstream. Thus it becomes

clear that tip and base vortices remain dominant in the very near-wake (x/d = 2), while they are

not as dominant farther downstream at x/d = 5−10. Further, strength of the tip vortex in the far-

downstream (x/d = 10) weakens with increasing depth-ratio up to DR = 1, where the tip vortex is

fully distorted and the base vortex dominates the wake.

4.1.4 Upwash and downwash motion

From the past literature (Sumner et al., 2004; Wang et al., 2006; Wang and Zhou, 2009; Hosseini

et al., 2013), it is well known that the free-end vortex pair or tip vortices induce downwash flow,

whereas the wall-body junction vortex pair or base vortices induce an upwash flow. Sumner et al.

(2004) and Hosseini et al. (2013) further elucidate that the free-end downwash dominates the wake

for a dipole-type mean-wake topology. In case of a quadrupole-type wake, the strong upwash

due to base vortex interacts with the downwash from the tip vortex, forming a saddle-point in

the symmetry plane (Wang and Zhou, 2009). For a thicker boundary layer, Wang et al. (2006)

observed that the upwash-flow is stronger resulting in the saddle-point located closer to the free-
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Figure 4.9: Contours of time-averaged axial vorticity (ωx
∗) structures (solid blue lines: positive

values, dashed red lines: negative values) for (a-c) DR = 0.016; (d-f) DR = 0.1; (g-i) DR = 0.3
and (j-l) DR = 1. The line contour cutoff levels for ωx

∗ are ±3 and the contour interval is 0.06.
The contours are shown at x/d = 2,5 and 10.
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Figure 4.10: The ωz
∗ contours overlapped with the time-averaged streamlines for (a) DR = 0.016;

(b) DR = 0.1; (c) DR = 0.3; (d) DR = 1; (e) DR = 2 and (f) DR = 4. Plots are shown at y/d = 0.

end of the prism. In the present study, it becomes important to analyze the influence of varying

depth-ratio on upwash and downwash flow. To this effect, Figure 4.10 shows the contours of

ωz
∗ overlapped with the time-averaged streamlines for all cases, shown at the symmetry plane.

The intensity of upwash or downwash flow is clearly evident by their effect on the leading-edge

shear-layer separation at prism free-end. Figure 4.10 shows the location of the saddle-point for

all cases, which clearly indicates that the location of saddle-point lowers towards the wall-body

junction with increasing depth-ratio. This hints at increasing strength of free-end downwash flow

with larger depth-ratios(Zargar et al., 2021b).
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Upwash and downwash flows have profound effects on the mean shear layer separation and

elongation in the downstream wake, which in turn affects the flow periodicity (Wang et al., 2006;

Wang and Zhou, 2009). Zdravkovich (2003) reported on the influence of downwash flow on the

elongation of separating shear layer and widening of the near-wake. This study suggested that

with increasing strength of downwash flow, the near wake widened and the shear layer elongated,

resulting in prolonged spanwise vortex shedding. Wang and Zhou (2009) observed similar results

for the case of increasing aspect-ratio for a finite square prism. Since the vortex shedding

mechanism directly depends on the elongation of shear layer and spanwise momentum

transport (Zdravkovich, 2003), this thesis quantitatively analyzes the transport and recovery of

mean shear layers, under the influence of upwash and downwash flow, in Figure 4.11. Previous

studies (Smits et al., 2019b; Goswami and Hemmati, 2020, 2021a) have used a similar method to

investigate the recovery of a separated shear layer downstream of a sudden contraction-expansion

system. Figure 4.11 shows the location of maximum Reynolds shear stress, that is YM(−u′v′) and

ZM(|u′w′|), in the wake. As the Reynolds stress reflects the stirring and mean momentum

transport by fluctuating velocity component, downstream spread of −u′v′ and u′w′ are associated

with the formation of spanwise vortices and their convection downstream (More et al., 2015). The

value and trend of u′w′ is also a measure of fluctuating streamwise momentum transport in the

lateral direction or a degree of correlation between streamwise and cross-stream fluctuating

velocities. Since u′w′ is positive and negative in regions above and below the centerline,

respectively, the location of maximum |u′w′| was employed for characterizing the wake.

Transport of −u′v′ in Figure 4.11a sheds light on the influence of depth-ratio on the strength

of upwash (v′ > 0) and downwash (v′ < 0) flow. For all cases, initially the stresses remain close to

the height of the prism. Small depth-ratio cases (DR = 0.016 and 0.1) show a prolonged region of

v′ > 0 behind the prism, which entrains high-momentum fluid from the free-steam into the wake,

resulting in a strong upwash flow. Thus, transport of −u′v′ away from the ground, in the region of

upwash flow (4 < x/d < 10), is clearly observed for the case of DR ≤ 0.3. With increasing depth-

ratio, a small region of upwash flow exists immediately behind the prism, while downstream wake
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Figure 4.11: Location of the maximum Reynolds shear stress, YM(−u′v′), and ZM(|u′w′|),
normalized by the prism width (d), downstream of the wall mounted prism, at (a) z/d = 0 and
(b) y/d = 0.5 plane.

is mainly dominated by downwash flow. Thus, −u′v′ initially remains close to the prism height for

the case of DR > 0.3, but it quickly recovers towards the ground farther downstream in the wake.

The profiles of u′w′, in Figure 4.11b, correspond to the roll-up of shear layer from the side faces

of the prism. The near wake appears widened for DR ≤ 0.3, under the influence of strong upwash

flow. Its recovery towards the core region is prolonged until x/d ≈ 5. With increasing depth-ratio,

the location of maximum shear stress is lowered towards the wake core within a short distance

from the rear face of the prism, which hints at narrowing of the wake width. Thus, increasing the

depth-ratio weakens the interaction between downwash flow and spanwise separating shear layers,

which in-turn coincides with growing strength of upwash flow in the far-wake. The analyses that

follows focus on evaluating the impact of upwash and downwash flows on periodicity in unsteady

wakes.

4.1.5 Flow periodicity and spanwise coherence

Figure 4.12 presents the the power spectral density (Eu) of streamwise velocity for two prisms with

DR = 0.016 and 0.1. Welch’s averaged modified periodogram method (Welch, 1967) was utilized
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Figure 4.12: The power spectral density function, Eu, of the streamwise streamwise velocity (u)
at x/d = 2.5, y/d = 0.5 and z/d = 0.5, for (a) DR = 0.016 and (b) DR = 0.1 prisms at Reynolds
number of 2.5×102.

to calculate the power spectrum, where velocity data (time-history) was split into 8 segment with

50% overlap with a Hamming window was applied on each segment. The dominant frequency

for DR = 0.016 corresponds to Stsh = 0.1875, while it reduces to Stsh = 0.15 with increasing

depth-ratio to 0.1. Visual inspection of the wake over time reveals that these dominant shedding

frequencies are associated with hairpin-like structures formed by the separated shear layer at the

prism leading edge. The dominant frequency noted here is higher compared to large aspect-ratio

(AR= 2−7) prisms (Wang et al., 2006; Wang and Zhou, 2009; Saha, 2013; Rastan et al., 2017), in

which case the range of St is 0.11−0.13 at Re= 40−9.6×103. There are, however, limited studies

in literature that look at the influence of depth-ratio on vortex shedding. The recent study of Rastan

et al. (2021) reported that increasing depth-ratio from 1 to 3 lowered Stsh. The Strouhal number

noted in their work was 0.049 ∼ 0.138 for DR = 1− 4 cases at Re = 1.2× 104 and aspect-ratio

of 7, which was lower compared to the value obtained here. The reduced shedding frequencies in

those studies, compared to the present case, were attributed to elongation of the vortex formation

under the influence of intense downwash flow.

Hairpin-like vortex formation is a key wake feature in case of isolated bluff-bodies such as

finite aspect-ratio flat-plate, isolated cubes and prisms. In case of the finite aspect-ratio flat-plate,



Chapter 4. Wake asymmetry and secondary structures behind wall-mounted prisms 96

Hemmati et al. (2016) established that shedding occur as a result of shear-layer peel-off of side-

edge vortices from the shorter side due to secondary flow induced by detachment of main vortex

roller from longer side of the plate. The dominant shedding structures in this case resemble hairpin-

like vortices. They observed a shedding frequency of Stsh = 0.317 for flat plate of aspect-ratio 3.2,

which is significantly higher compared to the present study. The increased shedding frequency

in case of Hemmati et al. (2016) is attributed to the isolated nature of the flat-plate, where shear-

layers peel-off from either end of the flat-plate. Mainly, the added shear-layers contributed to

the dynamics that increases the shedding frequency. Further, Hemmati et al. (2017) expanded on

their previous study of normal-thin flat plates by examining the implications of aspect-ratios using

cases of AR = 1.6 and 1.0. The vortex shedding frequency reduces for these cases significantly,

such that Stsh = 0.146 for AR = 1 and Stsh = 0.186 for AR = 1.6. In case of AR = 1, a second

spectral harmonic peak is observed at 2St, which they attributed to the secondary vortex shedding

process observed with square plates. In the present study, the effects of horseshoe and hairpin-like

vortex can be isolated by changing the ground boundary to symmetry. In that case the shedding

frequency of the thin prism (DR = 0.016) is comparable to the results of Hemmati et al. (2017).

This hints at negligible influence of the interaction between horseshoe vortex and hairpin-like

vortex in wall-mounted flat-plate and prisms.

In the case of isolated cube, Saha (2004) established that the flow remains planar-symmetric

and steady up to Reynolds number of 2.65× 102. Then, the wake transition to unsteady flow by

undergoing Hopf bifurcation. The unsteady flow loses planar-symmetry, and the wake is

characterized by shedding of hairpin-like vortices in the wake. Further, Khan et al. (2020a,b) and

Meng et al. (2021) scrutinize the mechanism of shedding and various wake regimes for isolated

cubes. They note a reduction of the shedding frequency to ≈ 0.09 at Reynolds number of

2.7× 102 and ∼ 0.13 at Re = 4× 102, relative to suspended thin flat-plates. The wake topology

differs in the present study, where the flow is steady at similar setting, due to the reattachment of

the leading-edge shear-layer on top and side surfaces of the prism, which is consistent with

observations of Zargar et al. (2021b).
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Figure 4.13: The normalized autocorrelation function, ρτ , of the streamwise velocity at x/d = 2.5
and y/d = 0.05,0.5 and 0.95, for (a) DR = 0.016 and (b) DR = 0.1. Note that τ∗ = τ fsh is the
number of vortex shedding periods, where fsh is the vortex shedding frequency corresponding to
Stsh.

Lowering of the shedding frequency with increasing depth-ratio continues beyond DR= 0.3, at

which point the wake becomes steady. Although this trend depends on Re, such that the threshold

DR for transition to steady wake changes at higher Re, focus is retained on analyzing the wake

periodicity at Re = 2.5× 102 to establish the mechanisms leading to such trends. The reduction

in Stsh for the case of DR = 0.1 can be attributed to increasing dominance of the downwash flow,

evident by the results in Figure 4.11. This follows from arguments of Zdravkovich (2003), who

explained that the vortex shedding mechanism is directly dependent on elongation of the shear-

layer and spanwise momentum transport under the influence of upwash-downwash flow. The shear

layer elongation that was previously discussed for the case of larger DRs aligns well with lowering

trend of the shedding frequency observed here and corroborated by description of Zdravkovich

(2003).

The spectral analysis revealed additional flow dynamics in the wake. There are three dominant

wake features identified in Figure 4.12 that can also be associated with wake structures, by
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inspection: (1) Stsh that is associated with shedding of hairpin-like structures; (2) low-frequency

signature at Stsh/2 for the case of DR = 0.016, which is associated with sub-harmonic of the

hairpin-like vortex shedding; (3) high-frequency harmonic peaks centered at 2Stsh,3Stsh and 4Stsh

for the case of DR = 0.016, and at 2Stsh for the case of DR = 0.1. Diaz-Daniel et al. (2017b) and

Tiwari et al. (2019) have noted similar sub-harmonic and harmonic peaks in the wake of prisms,

mainly in the near-wake region, associated with interactions of detaching shear-layers from the

prism surfaces. Figures 4.12 and 4.13 provide the direct evidence of these flow features.

Autocorrelation of the streamwise velocity is shown in Figure 4.13 for DR = 0.016 and 0.1,

where time-lag (horizontal axis) is normalized by the vortex shedding frequency, fsh.

Autocorrelation of a signal is defined as,

ρτ =
⟨utut+τ∗⟩
⟨u2

t ⟩
,

where the streamwise velocity signal (ut) is correlated with itself (ut+τ∗) after a time delay

corresponding to one vortex shedding period (τ∗). Autocorrelation analysis is carried out using

the final 5 shedding cycles along the height of the prism at three locations. For the case of DR

= 0.016, signature of the vortex shedding process is intensified close to the prism free-end, where

a periodic signature is apparent corresponding to Stsh/2. At the mid-span and wall-body junction,

the periodic signature corresponds to Stsh. In case of DR = 0.1, no such distinction is observed

since the periodic signatures correspond to Stsh along the prism height.

The low frequency (Stsh/2) activity noted for DR = 0.016 is attributed to the region where tip

vortices are present (y/d ≈ 0.95), which is consistent with observations of Diaz-Daniel et al.

(2017b). This suggests that tip vortex shedding occurs at a different frequency compared to the

hairpin-like structures. Further investigation into phase lag between the shedding tip vortices on

two sides may account for the asymmetry. Previously, Kindree et al. (2018) and Morton et al.

(2018) reported low-frequency behavior for wall-mounted circular prisms with AR = 4 immersed

in a thin laminar boundary layer. They proceeded to argue, based on further analysis, that
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Figure 4.14: Spectral coherence, Cohu1u2 , between streamwise velocity u1 and u2 for DR = 0.016,
at x/d = 2.5 and z/d = 0.5. u1 was measured at y/d = 0.008, and u2 was measured at y/d =
0.05,0.5 and 0.95.

low-frequency signatures are unique to circular cross-section prisms with AR ≤ 4 that are placed

in thin-laminar boundary layers, and that this process is independent from Re. Here, a similar

behavior is observed for a small AR rectangular (sharp-edge) prism with sufficiently small DR

that result in asymmetric features. At Re = 2.5 × 102, this unique wake asymmetry is only

apparent for the case of DR = 0.016, while wake symmetry is restored quickly at DR = 0.1.

Similar wake behavior was observed for larger DRs at higher Reynolds numbers, as was

previously classified in Figure 4.1. Earlier in this thesis, both quantitative and qualitative evidence

hinting at the dynamics of side-edge shear layer detachment dictating the wake asymmetric

behavior has been observed and discussed. Further support for this hypothesis is aimed to be

provided by identifying the potential phase difference between shear layer detachment on the side

edges.
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To better understand near-wake dynamics associated with tip vortex low-frequency signatures,

for example for the case of DR = 0.016, spectral coherence (Cohu1u2) was employed between

velocity signals along the domain span in Figure 4.14. Spectral coherence provides the degree of

coherence between Fourier components of two streamwise velocity (time-history) signals, say u1

and u2, such that u1 is recorded at y/d = 0.008 and u2 at y/d = 0.05,0.5 and 0.95 (Wang and Zhou,

2009). Spectral coherence is defined as,

Cohu1u2 =
Co2

u1u2
+Q2

u1u2

Eu1Eu2

,

where Cou1u2 and Qu1u2 are the co-spectrum and quadrature spectrum function of u1 and u2, and

Eu1 , Eu2 are the power spectral density functions of u1 and u2. The signal for u1 is measured close

to the ground for reference, following the recommendation of Wang and Zhou (2009). The results

in Figure 4.14 for Cohu1u2 show a dominant peak at Stsh = 0.1875 along the prism span, as well

as at Stsh/2 close to the prism free-end. The peak value of Cohu1u2 for Stsh ranges from ∼ 0.3

at y/d = 0.05 to 0.5 to ∼ 0.1 at y/d = 0.95. This is while Cohu1u2 for Stsh/2 becomes ∼ 0.9 at

y/d = 0.95. The spanwise coherence at Stsh = 0.1875 suggests a strong correlation along the prism

height, which corroborates with hairpin-like structures shedding in the wake. A strong coherence

corresponding to Stsh/2 is absent along the prism height near its free-end. This suggests that low-

frequency signature originates from the prism free-end. Thus, low-frequency signatures observed

in the wake are associated with tip vortex shedding.

Coherent vortex shedding observed in the wake of two-dimensional prisms, typically

suggesting symmetric vortex shedding, correspond to no phase-lag (phase angle of zero) between

laterally arranged vortices (Zhou et al., 2002). In asymmetric vortex shedding, however, there is a

phase-lag between structures shed from different edges of the prism. The apparent phase

difference in mid-height of the prism, comparing streamwise velocity signals along the prism

span, hints at a potential phase difference between structures positioned on either edges of the

prism. This accounts for the wake asymmetry observed in the shedding and convective orientation
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Figure 4.15: The variation of instantaneous streamwise velocity components, u1 and u2, at
locations (2.5,0.95,±0.4) as shown in the schematic plot, for DR = 0.016 prism. t∗ is the
convective time, given as t∗ = tUb/d.

of hairpin-like structures. To verify the existence of a phase difference between tip vortices on

two sides of the prism, instantaneous streamwise velocity variations on opposite spanwise edges

of the prism are analyzed in Figure 4.15. The results are based on two instantaneous streamwise

velocity signals, u1 and u2, measured at opposite spanwise locations with respect to the prism

middle line, that is (2.5,0.95,+0.4) and (2.5,0.95,−0.4). These spatial positions correspond to

the location of low-frequency signature observed earlier for the case of DR =0.016, i.e. the

location of tip vortices. It becomes clear from Figure 4.15 that the two signals, u1 and u2,

experience a phase shift of π . At a given instant of time, the signal of u1 leads u2 by half a period,

which corresponds to the low-frequency observed at Stsh/2. Thus, the tip vortices from either side

of the prism shed alternately with a low-frequency and opposite phase. This provides us with

more evidence on the mechanism of wake asymmetry associated with low depth-ratio prisms.

The implications of alternate tip vortex shedding on the hairpin-like structures in the wake are

next analyzed. Interactions between the tip vortex and separating side-edge shear-layers could

result in formation of secondary vortex structures, and thus contribute to shear-layer pre-mature

separation, or “peel-off” following the terminology of Hemmati et al. (2016). Further, the
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streamwise coherence of these secondary vortex structures is associated with the pattern of

shedding of hairpin-like vortices. Hence, there is an inherent mechanism that leads to formation

and shedding of hairpin-like structures in an asymmetric pattern in the wake of wall-mounted low

depth-ratio prisms.

4.1.6 Mechanism of asymmetric shedding

Hwang and Yang (2004) and Yakhot et al. (2006) have previously characterized the flow around a

wall-mounted cube. These studies reported a dominant hairpin-like shedding in the wake,

resulting from the adverse pressure gradients formed by the abrupt boundary layer separation on

the surfaces of the body. Further, Diaz-Daniel et al. (2017b) showed that such hairpin-like

structures appear symmetric at low Reynolds numbers, due to the shear-layer

reattachment-separation on the prism surfaces. With increasing Reynolds number, hairpin

structures lose their symmetry moving downstream, which is the onset of their break down and

incoherence. Moreover, Diaz-Daniel et al. (2017b) observed a low-frequency signature

corresponding to tip vortices, which were absent in case of symmetric hairpin-like shedding.

They hinted at potential interactions between tip vortices and the hairpin head, leading to the

aforementioned dynamic wake features and vortex distortion.

A similar approach can be utilized for the current study, compared to those of Diaz-Daniel

et al. (2017b), to characterize the mechanism of wake asymmetry. Thus far, it is established that

for the case of DR = 0.016, which exhibits asymmetric wake structures, tip vortices are shed at a

lower frequency and they exhibit an inherent lateral phase difference. This directly relates to the

orientation and coherence of hairpin-like structures that are formed by detachment of shear layers

from top and side edges of the prism. Figure 4.16 shows the instantaneous vortex structures using

Q∗ overlaid with contours of streamwise vorticity (ωx
∗) for DR = 0.016. At x/d = 0, both

contour-line and iso-surface plots hint at the presence of symmetry in the wake, where primary

and secondary tip vortices are clearly visible and are positioned symmetrically. More details on

these structures have already been discussed extensively. Farther downstream, near-wake
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Figure 4.16: Instantaneous vortex structures identified using Q∗ = 6× 10−6 and overlaid with
streamwise vorticity (ωx

∗), surrounded by the line contours of ωx
∗ (solid blue lines: positive values,

dashed red lines: negative values) for DR = 0.016 prism at Reynolds number of 2.5× 102. The
line contour cutoff levels for ωx

∗ are ±0.12 and the contour interval is 0.001. Contours are shown
at x/d = 0−2.5 at intervals of 0.5.

structures start showing signs of distortion, hinting at symmetry breaking, at x/d = 1. It has been

already discussed how secondary tip vortices appear fully distorted at x/d = 1, while primary tip

vortices dominate the wake (Rastan et al., 2021). Onwards from x/d = 1.5, primary tip vortices

start interacting with the separating shear layer from top and side surfaces of the prism. At

x/d = 2 and 2.5, there are several secondary streamwise vortex structures identified in the wake.
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(a) (b)

Figure 4.17: Circulation (Γ), normalized by bulk velocity (Ub) and prism width (d), computed for
Top and side surface shear-layers of (a) DR = 0.016 and (b) DR = 0.1 prisms at Reynolds number
of 2.5×102. t∗ is the arbitrary range of convective time, given as t∗ = tUb/d.

The sign of vorticity (direction of rotation) for secondary vortex structures is opposite to that of

the corresponding shear layer (see x/d = 2). The influx of vorticity due to these secondary

structures further facilitate their interactions with the separating shear-layer from the prism top

surface, which forms the head of hairpin-like structures upon its detachment from the

body (Hwang and Yang, 2004). This interaction impacts the separating hairpin-like structure on

either side, causing asymmetric vortex shedding. Similar secondary vortex structures are noted

downstream, the presence of which coincides with tilting of hairpin-like structure towards that

respective side.

Summarizing previous discussions, key features of asymmetric wake behind small

aspect-ratio wall-mounted prisms include (1) the formation of multi-part horseshoe vortex in front

of the prism, (2) shedding of horseshoe legs in the wake, (3) leading edge shear-layer separation

from the prism top and side surfaces, (4) the formation of secondary-vortex structures, and (5)

subsequent formation of asymmetric hairpin-like structures in the wake. These key features

remain common amongst the cases studied here, and shown in Figure 4.16 and 4.20.

The interactions of the tip vortex and side-edge separating shear layers, as well as the

mechanism of shear-layer peel-off, are investigated next. This can establish a potential cause for
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the formation of hairpin-like structures in the wake. Figure 4.17 compares the circulation (Γ) for

top and side shear-layers for both asymmetric (DR = 0.016) and symmetric (DR = 0.1) hairpin

shedding cases. The absolute values of circulation are compared, and normalized using bulk

velocity (Ub) and prism width (d). For both depth-ratios, the strength of top-surface shear layer

appears higher compared to that from either sides. Larger circulation of top shear-layer entails a

roll-up from leading edge and a strong upwash flow that causes shear-layer peel-off. Further, the

evidence of alternate shedding of tip vortex interacting with the side shear layer is clear from

Figure 4.17. Trends of circulation computed for the dominant shear layer on one side lead those

from the weaker side by a phase difference of π . This phase difference is consistent with that of

tip vortex shedding from either side of the prism. Further, comparing circulation of the side shear

layers at any time (t∗), it is noticed that the shear-layer on one side is stronger compared to its

counterpart. As such, the side with stronger shear-layer (larger circulation) tilts the separating

hairpin on that respective side. No such phase difference is observed for DR = 0.1, where the side

surface shear-layers shed simultaneously from either side of the prism.

Analyses thus far reveal that further evaluation of the origins of secondary structures is

necessary. Contour-line plots at x/d = 2 in Figure 4.16 suggests that the influx of vorticity (from

secondary vortex structure) is consistent with the vorticity of primary tip vortex. To analyze this

further at this location, temporal evolution of ωx
∗ is evaluated in Figure 4.18 within one shedding

cycle. These clearly depict the formation of the head section of hairpin-like structure. Initially, a

secondary vortex structure is identified at t1 in Figure 4.18a, which tilts the separating shear-layer

towards its respective side, in this case +z direction. Primary-tip vortices are also identified at t3

and t4 in Figures 4.18c and 4.18d. Structures with a negative-sign vorticity (dashed red lines at t4

in Figure 4.18d) interact with the shear-layers detaching from the top and side surfaces of the

prism with an opposite vorticity-sign (solid blue lines at t4 in 4.18d). This leads to an influx of

opposite vorticity in the separating shear layer, the interjection of which with the shear-layer

induces an inward velocity, with respect to the prism. This feature distorts the hairpin-like

structure and breaks the wake symmetry.
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Figure 4.18: Time marching, line contours of ωx
∗ (solid blue lines: positive values, dashed red

lines: negative values) plotted at x/d = 2 for DR= 0.016 at Reynolds number of 2.5×102. The line
contour cutoff levels for ωx

∗ are ±0.12 and the contour interval is 0.001. Contours are shown at
(a) t1 = to; (b) t2 ≈ to+ 1

5τ∗; (c) t3 ≈ to+ 2
5τ∗; (d) t4 ≈ to+ 3

5τ∗; (e) t5 ≈ to+ 4
5τ∗ and (f) t6 ≈ to+τ∗.

τ∗ is the time scale based on τ∗ = d/(UbSt).

Based on their location and the vorticity-sign of secondary vortex structures in Figures 4.18a

and 4.18f, it is argued that the secondary vortex structures form as a result of alternate shedding

of primary tip vortices, due to excess vorticity resulting from the shear layer during the peel-off

process on either side of the prism. The trends of circulation, which is the area integral of vorticity

associated with the vortex, in Figure 4.17 shows the evidence of excess vorticity during shear-

layer detachment from either side of very thin prism. The shear-layer on either side is stronger

compared to its counterpart, resulting in excess vorticity on the respective side, that may lead to

such secondary vortex structures. The excess vorticity in asymmetric wake feeds the secondary

structures, which accounts for their coherence far downstream in the wake. In case of depth-ratio
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0.1, the side-surface shear-layers shed simultaneously, devoid of any vorticity deficit. Thus the

secondary vortex structures forming in the wake lose their coherence fairly quickly downstream.

The existence of a single coherent structure in the wake, despite different frequency signatures

observed in the power spectrum (see Figure 4.12a), deserve a closer attention. On elaborating the

mechanism of hairpin-like structures, Tiwari et al. (2019) attributed their formation to elongation

and interactions of separating shear-layers from the prism top and side surfaces. The top and side

surface shear-layers merge to form the hairpin-like structures in the wake (Khan et al., 2020a).

The leading edge separation from the prism side surfaces induces vortical motions that form the

tip vortices, which interact with the shear-layer formed over the cube. This interaction leads to

distortion of the hairpin-like structure in the wake, and formation of secondary structures that

lose their coherence downstream. The existence of secondary structures that are connected to

the coherent hairpin-like structure (see Figure 4.16) accounts for the low-frequency signatures

observed in the power spectrum.

Finally, DMD is utilized to explore different aspects of the wake dynamics and to confirm the

origins of asymmetric hairpin-like vortices as a result of alternate shedding of primary-tip vortex

at Stsh/2. DMD provides a computational framework to extract a primary low-order description

of a data-set through its orthonormal modes in a temporal sense (Zheng et al., 2019; Khalid et al.,

2020; Taira et al., 2020). In other words, DMD enables identification of spatial structures with

characteristic frequencies associated with these structures. In the present study, since the case of

DR = 0.016 results in sub-harmonic and harmonic peaks in the power spectrum, DMD analysis

enables segregating the induced effects of each frequency on the overall wake. Here, the cases

of DR = 0.016 and DR = 0.1 are considered for wake characterization using DMD analysis as a

generalized example with asymmetric and symmetric wakes. DMD analysis is completed using

Streaming Total Dynamic Mode Decomposition (STDMD) (Hemati et al., 2016, 2017) method

implemented in OpenFOAM. The details of mathematical formulations and implementation of the

algorithm is found in the work of Kiewat (2019).
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Figure 4.19: (a,b) Reconstructed vortex structures identified using Q-criterion and overlaid
with instantaneous streamwise vorticity and (c,d) Reconstructed streamwise vorticity structures.
Structures are reconstructed using the addition of (a,c) mean with DMD Mode 1 (Stsh); (b,d) mean
with DMD Mode 1 (Stsh) and Mode 2 (Stsh/2).

The reconstructed vortex structures in Figures 4.19a and 4.19b are identified using Q-criterion

iso-surfaces that are overlaid with instantaneous streamwise vorticity. Reconstruction is

performed by addition of mean mode with DMD mode 1, corresponding to Stsh, and mode 2,

corresponding to Stsh/2. In the current analysis, DMD modes 1 and 2 are the dominant modes,

corresponding to ∼ 35% and ∼ 31% of the frequency amplitudes. This hints at the dominant

influence of Stsh and Stsh/2 on the overall flow dynamics. From Figure 4.19a, showing the

addition of mean flow to mode 1, illustrate that the dominant modes possess structures that

correlate with the shedding hairpin-like structures in the wake. These shedding hairpin-like

structures are symmetric, with frequency corresponding to Stsh. Thus it is evident from this result

that the dominant frequency arises from the shedding of hairpin-like structures. Figure 4.19c,
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presenting instantaneous streamwise vorticity structures obtained by addition of mean with mode

1, show the legs of hairpin-like structures forming due to anti-symmetric vorticity about the

centerline. In the past literature (Kindree et al., 2018; Morton et al., 2018), the general topology

of symmetric vortex shedding modes are made up of a series of counter-rotating vortices located

on either side of the wake streamline. This suggests that the side-edge shear-layers shed

simultaneously and result in symmetric hairpin-like structures shedding at the dominant Strouhal

number (Stsh).

The influence of sub-harmonics (Stsh/2) on the overall flow is examined by adding mode 2 in

our DMD analysis. Figure 4.19b shows the reconstructed structures by addition of mean mode

with DMD mode 1 and 2, and the respective vorticity structures are shown in Figure 4.19d. With

addition of mode 2 corresponding to sub-harmonic frequency, the iso-contours show asymmetry

in the shed hairpin-like structures. The asymmetry arises from the influx of excess vorticity (see

Figure 4.19d) to either side. Here, the excess vorticity on either side in mode 2 (Figure 4.19d)

feeds into the anti-symmetric vorticity about the centerline in mode 1 (Figure 4.19c). Such influx

induces an inward velocity, with respect the the prism, distorting the head of the hairpin-like

structure. Thus, the origins of asymmetry can be attributed to the influx of vorticity as a result of

sub-harmonic, low-frequency instability centered at Stsh/2. This observation further complements

existing literature (Diaz-Daniel et al., 2017b; Morton et al., 2018; Kindree et al., 2018) by

attributing the influx of vorticity to the secondary vortex-structures that interact and distort the

hairpin-like shedding structures. The discussions thus here provides, for the first time, a detailed

description of these structures, their physical mechanisms and their contributions to the wake

asymmetry.

This observation is not limited to very thin prism at low Reynolds number. Figure 4.20 shows

asymmetric wake and existence of secondary vortex structures in case of DR = 0.6 at Reynolds

number of 4×102 as well as DR = 1 at Re = 5×102. This is corroborated by the classification of

wake topology in Figure 4.1. This suggests that secondary structures and the subsequent

asymmetry in the wake develops at sufficiently small depth-ratios with increasing Reynolds
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Figure 4.20: Instantaneous vortex structures of prisms with (a) DR = 0.6 at Re = 4× 102; and
(b) DR = 1 at Re = 5×102, identified using Q∗ = 6×10−6 and overlaid with ωx

∗. All figures are
shown in three-dimensional view.

number. The applications and effectiveness of DMD analysis at higher Reynolds number is

evident from the study of Khalid et al. (2020). At higher Reynolds numbers and depth-ratios, the

interactions of shedding vortex structures with detaching shear-layers results in near-wake

incoherence and multiple sub-harmonic and harmonic frequencies (Diaz-Daniel et al., 2017b).

The investigation of such incoherent wake using DMD analysis, though interesting, remains part

of a future study. Further, higher Reynolds number leads to stronger interaction between the

secondary vortex structures and separating shear layers, resulting in more disorganized

distribution of wake structures downstream in Figure 4.20b. In case of symmetric shedding (see

Figure 4.21), secondary vortex structures also appear symmetric and their shedding frequency

corresponds to the shedding frequency of the main hairpin-like structure. As the flow progresses

downstream, they lose their coherence and vanish completely. This explains the lack of these

structures farther downstream the wake.
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Figure 4.21: Instantaneous vortex structures identified using Q∗ = 6× 10−6 and overlaid with
streamwise vorticity (ωx

∗), surrounded by the line contours of ωx
∗ (solid blue lines: positive values,

dashed red lines: negative values) for DR = 0.1 prism at Reynolds number of 2.5×102. The line
contour cutoff levels for ωx

∗ are ±0.12 and the contour interval is 0.001. Contours are shown at
x/d = 0,1,1.5,2 and 2.5.

4.2 Summary

Flow over a wall-mounted finite prism with aspect-ratio 1 and varying depth-ratios (0.016− 4) is

numerically investigated at Re = 5×101 −5×102 to characterize the implications of depth-ratio

on flow dynamics. The minimum depth-ratio considered here accounts for the special case of a

wall-mounted very thin prism (similar to a flat plate), which is used to establish the mechanism

and wake evolution associated with the free-end effects and shear layer dynamics in small

aspect-ratio prisms. These analyses and their related arguments are therefore expandable to other
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cases (different depth-ratio and Re) that exhibit a similar wake classification. The wake analyses

at a range of Reynolds numbers and depth-ratios suggest that threshold Re at which the wake

experiences unsteady transition changes with increasing depth-ratio. Moreover, it is established

that there is a unique asymmetric wake system formed behind wall-mounted prisms with

sufficiently small depth-ratios resulting from alternating shear-layer peel-off on either side of the

body.

The unsteady wake topology and dynamics, including symmetric and asymmetric wakes, are

evaluated using the wake of the very thin prism as an example, which can be expanded to other

cases with a similar wake classification. For the case of a thin prism (DR = 0.016) at

Re = 2.5×102, the wake was dominated by tilted hairpin-like structures that form an asymmetric

wake system. This phenomenon was well suppressed, and wake symmetry restored, at a larger

DR of 0.1. Further analysis revealed that threshold DR associated with the restoration of wake

symmetry increases with Reynolds number. For example, the wake symmetry is restored by

DR = 0.3 at Re = 3× 102, 1 at Re = 4× 102, and 2 at Re = 5× 102. This study identified and

described a unique flow mechanism leading to this particular wake behavior using the results at

Re = 2.5× 102. The alternating vortex shedding from either sides of the prism coincided closely

with tilting of hairpin-like structures, and the formation of wake asymmetry. Moreover, it was

determined that this alternating process is attributed to the out-of-phase detachment of shear

layers on either side of the prism at a lower Strouhal number (Stsh/2). Moreover, it was identified

that the wake features secondary streamwise structures that appear alternatively on either sides of

the prism in downstream wake. The origin of secondary vortex structures was attributed to the

alternate shedding of primary tip vortices. In case of asymmetric shedding, they resulted from an

influx of vorticity from the shear-layer peel-off process, which fed into these structures.

Increasing the depth-ratio to 0.1 lead to restoration of flow symmetry through symmetric

shedding of the side surface shear layer. Secondary streamwise structures were also reported here,

though they shed symmetrically and lost coherence fairly quickly downstream the prism.
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Chapter 5

MEAN WAKE EVOLUTION BEHIND

WALL-MOUNTED PRISMS
‡

Past studies have primarily focused on identifying and characterizing flow structures around

wall-mounted prisms, both instantaneous and time-averaged (mean). As discussed in Section 2.2,

these investigations provide a detailed understanding of the evolution of mean wake topology

with single-parameter dependencies. However, evolution of the mean wake as a multivariate

function remains unexplored. Additionally, there is no consensus on the mean wake topology for

small aspect-ratio prisms, as most studies emphasize the effects of aspect-ratio and boundary

layer thickness (Derakhshandeh and Alam, 2019; Yauwenas et al., 2019). The role of downwash

flow in shaping downstream wake topology is also unclear. While previous studies suggest that

the tip vortex and its induced downwash flow significantly influence mean wake topology,

particularly for small aspect-ratio prisms, these effects lack comprehensive analysis. Chapter 4

established that changes in depth-ratio strongly affect tip vortex strength, with increasing

depth-ratio amplifying the downwash flow. This chapter addresses the gaps in understanding how

changing depth-ratios (normalized length) affect the wake, extending the analysis from Chapter 4.

‡The content of this chapter has been published in International Journal of Heat And Fluid Flow under the
citation (Goswami and Hemmati, 2023): “Goswami, S., & Hemmati, A. (2023). Mean wake evolution behind low
aspect-ratio wall-mounted finite prisms. International Journal of Heat and Fluid Flow, 104, 109237”.
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Figure 5.1: Classification of the mean wake topology in terms of Reynolds number and depth-
ratio for prism with aspect-ratio of 1. Note: the vertical axis is non-linear, representing depth-ratios
between 0.016–4.

Primary aim of this study is to ascertain the mechanism of the evolution of mean wake topology

as a function of depth-ratio. The study focuses on prisms with AR = 1 and DR = 0.016− 4 at

Re = 5× 101 − 5× 102, doubling the Reynolds number range explored by Zargar et al. (2021b)

and systematically increasing the depth-ratio. This chapter is structured such that the results and

discussion are presented in Section 5.1, followed by a summary of the main findings in

Section 5.2.

5.1 Results and Discussion

First, the mean wake topology is classified based on the presence of vortical structures in the flow.

The main wake systems were Dipole, Multipole and Quadrupole-type wakes that were observed at

a range of Reynolds numbers and depth-ratios, shown in Figure 5.1. This classification is based on

the number of streamwise vortex pairs, i.e. tip and base vortices, formed in the downstream wake.

For wall-mounted finite prisms, there are three main streamwise vortices observed in the wake,

including the primary tip vortex (TV1), secondary tip vortex (TV2) and the base vortex or Upper
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(a) DR = 1 at Re = 2.5×102
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(b) DR = 1 at Re = 3×102
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(c) DR = 1 at Re = 3.5×102

Figure 5.2: Line contours of ωxd/Ub (solid blue lines: positive values, dashed red lines: negative
values) showing (a) Dipole-type, (b) Multipole, and (c) Quadrupole-type cross-sectional wake
topology. All cases are for prism with Aspect-ratio of 1. Contours are shown at x/d = 5.

vortex (UV ) (Wang and Zhou, 2009). Tip vortex (identified in Figure 5.2a) induces a downwash

flow in downstream wake of the prism, while base (upper) vortex (identified in Figure 5.2c) induces

an upwash flow. In the case of small aspect-ratio wall-mounted prisms, previous studies (da Silva

et al., 2022) have referred to the base vortex pair as the “upper” vortex pair. Although the base

vortex originates from the wall-body junction, due to the small aspect-ratio of the prism, these

vortices transport near the prism free end downstream. Therefore, for consistency with the existing

literature, these vortices (base vortex pair) are referred to as the “upper vortex pair”. Then, there

are cases that exhibit a secondary tip vortex (TV2) that is formed on the top surface of the prism

with an opposite sign of rotation relative to the primary tip vortex (TV1). The secondary tip vortex

(TV2) is associated with downwash flow as noted in Chapter 4. Line contour profiles of mean

streamwise vorticity (ωx) in Figures 5.2 further illustrates these identified mean wake topologies in

cross-sectional profiles. Here the mean streamwise vorticity is normalized using prism width (d)

and free-stream velocity (Ub) such that ωx
∗=ωxd/Ub. Dipole-type wake in Figure 5.2a exhibits tip

vortices that remain in the downstream wake, while Quadrupole-type wake (Figure 5.2c) involves

both tip and upper vortices. Multipole-type wake in Figure 5.2b features an extra pair of vortices,

refereed to as secondary tip vortex (TV2), that extend downstream. Multipole-type wake presents

an evolutionary or Intermediate mean wake pattern between Quadrupole and Dipole wakes.



Chapter 5. Mean wake evolution behind wall-mounted prisms 116

The results in Figure 5.1 indicate that the mean wake topology depends strongly on both

Reynolds number and depth-ratio of the prism. For example, increasing Reynolds number from

2.5 × 102 to 3.5 × 102 results in the evolution of the mean wake topology from Dipole to

Multipole to Quadrupole type wakes for DR = 1. The wake is dominated by a pair of tip vortex at

Reynolds number of 5 × 101, following which it evolves into Quadrupole-type wake at

Re ≥ 1 × 102. At a particular Reynolds number, for example at Re = 2.5 × 102, increasing

depth-ratio results in evolution of mean wake topology from Quadrupole to Multipole to Dipole

type wakes. As such, higher Reynolds number results in the enhancement of streamwise vortices,

while increasing depth-ratio leads to suppression of streamwise vortices that results in mean wake

evolution observed here. Previous investigations of Zargar et al. (2021b) and Rastan et al. (2021)

have observed similar enhancement and suppression of streamwise vortices with increasing

depth-ratio. Zargar et al. (2021b) showed that increasing depth-ratio led to enhancement of

downwash flow resulting in a Dipole-type wake for large depth-ratio prisms, while Rastan et al.

(2021) reported impairment of tip vortices with increasing depth-ratios. The contrary

observations by Zargar et al. (2021b) and Rastan et al. (2021) stem from aspect-ratio effects in

wall-mounted prisms. The numerical analysis of Rastan et al. (2021) looked at the influence of

increasing depth-ratio on the wake of a large aspect-ratio (≈ 7) prism, while Zargar et al. (2021b)

focused on prisms with aspect-ratio of ∼ 1.2. Yet no consensus exists in literature on the origin

and role of enhancing/suppressing vortex structures in evolutionary wakes.

Figure 5.1 identifies that the threshold depth-ratio for evolution of mean wake topology

increases with Reynolds number. It becomes clear that the wake is Quadrupole dominant in case

of small depth-ratio prisms (DR ≤ 1) and Dipole dominant in case of large depth-ratios (DR > 1).

Increasing depth-ratio leads to the enhancement of downwash flow, resulting in the wake

evolution from a simple to a more complex wake. Past studies have successfully identified the

mean wake evolution with increasing prism aspect-ratio, although no such consensus exists in

case of increasing depth-ratio at a range of Reynolds numbers. Moreover, the mechanism of the

wake evolution evolution is not clear in the case of increasing depth-ratio. Thus, present study
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aims to identify and characterize the evolution in mean wake topology and evaluate its

mechanism as a function of depth-ratio and Reynolds number for the first time in literature.

Past studies on small aspect-ratio prisms (AR ≤ 3) have explored the role of downwash flow

(Tip vortex) in dictating the downstream wake topology (Sumner et al., 2004; Sumner and

Heseltine, 2008). These studies have indicated three factors governing the downstream wake of

small aspect-ratio wall-mounted prisms: (1) intensity of downwash flow, (2) the effect of upwash

and downwash flow on spanwise momentum transfer, and (3) interactions between tip and upper

vortex due to small aspect-ratio of the prism (Wang and Zhou, 2009; da Silva et al., 2022).

Investigating these factors can provide further evidence on the wake dynamics and mechanism of

mean wake evolution observed here. To this end, time-averaged (mean) wake topology is

characterized as a function of changing Reynolds number and depth-ratio in the next section,

followed by investigation of the intensity and influence of downwash flow on the wake structures,

towards characterizing and identifying the mechanisms associated with wake evolution. Since a

large number of cases are investigated over a broad parameter space, this chapter focuses on three

cases for brevity, to identify and characterize the mean wake topology. These cases are DR = 1 at

Re = 2.5 × 102,3 × 102 and 3.5 × 102, representing Dipole, Multipole and Quadrupole wake

topology, respectively.

5.1.1 Time-averaged wake characteristics

Time-averaged vortical structures are shown in Figure 5.3 using the iso-surfaces of λ2 overlaid by

the contour of mean axial vorticity (ωx). Top-right of each figure shows an overlapped slice

featuring the mean wake topology in axial plane. Dipole-type wake structure is observed in

Figure 5.3a, where two counter-rotating streamwise vortices emanating from the tip extend into

the wake. These structures coincide with the Dipole-wake pattern shown in Figure 5.2a.

Quadrupole wake topology (Figure 5.3c) shows both counter-rotating tip (TV1) and upper vortices

(UV ) in the wake, similar to Figure 5.2c. Finally, the Multipole wake topology (Figure 5.3b) is

reported, featuring a pair of secondary tip vortices (TV2). TV2 appears to have opposite-sign
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(a) Dipole wake

Flow

(b) Multipole wake

Flow

(c) Quadrupole wake

Figure 5.3: Time-averaged (mean) wake structures identified using λ2 = −0.0001 colored with
ωxd/Ub. Shown are (a) DR = 1 at Re = 2.5× 102, (b) DR = 1 at Re = 3× 102, and (c) DR = 1
at Re = 3.5× 102. Line contours of ωxd/Ub are also drawn on the yz-planes at x/d = 5 and 8,
resembling the streamwise wake topology identified in Figure 5.2.

vorticity compared to TV1, consistent with Figure 5.2b. Figure 5.4 shows these topologies at

different depth-ratios and Reynolds numbers. For clarification, Dipole wake is shown at

depth-ratio of 2 at Re = 3 × 102, Multipole wake at depth-ratio of 3 at Re = 4.5 × 102, and

Quadrupole wake pattern is presented at depth-ratio of 0.016 at Re = 2.5×102. The consistencies

between Figure 5.4 and Figure 5.3 suggest that the mean wake topology do not show solely the

effect of changing depth-ratio or that of Reynolds number rather, these effects appear to be
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Flow
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Flow
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Figure 5.4: Time-averaged (mean) wake structures identified using λ2 = −0.0001 colored with
ωxd/Ub. Shown are (a) DR = 2 at Re = 3×102, (b) DR = 3 at Re = 4.5×102, and (c) DR = 0.016
at Re = 2.5× 102. Line contours of ωxd/Ub are also drawn on the yz-planes at x/d = 5 and 8,
resembling the streamwise wake topology identified in Figure 5.2.

interconnected. These structures have been reported by Rastan et al. (2021) and Chapter 4, in

which they emanate from the top surface of the prism leading edge and extend into the wake.

Rastan et al. (2021) showed that secondary tip vortices vanish in the vicinity of the prism due to

the large aspect-ratio and strong downwash flow. For small aspect-ratio prisms, however, they

prevailed (Chapter 4). This hints at the influence of aspect-ratio in suppressing streamwise

vortices in the wake.
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Figure 5.5: Line contours of ωxd/Ub (solid blue lines: positive values, dashed red lines: negative values) showing evolution of primary
tip vortex (TV1), secondary tip vortex (TV2), and upper vortex (UV ), in (a-d) Dipole-type (DR = 1 at Re = 2.5× 102), (e-h) Multipole
(DR = 1 at Re = 3×102), and (i-l) Quadrupole-type (DR = 1 at Re = 3.5×102) wake topology. All cases are for prism with Aspect-ratio
of 1.
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The evolution of streamwise vortex structures are shown in Figure 5.5 using time-averaged

streamwise vorticity (ωx) contours at various axial locations in the wake for all wake topologies,

including x/d = 0,3,5, and 10. The abbreviations in Figure 5.5 refer to primary tip vortex (TV1),

secondary tip vortex (TV2), and upper vortex (UV ). Although these contours are analogous to flow

visualizations in Figure 5.3, they quantify the wake strength and clarify vortex structure over the

prism surfaces. For Dipole-type wake (Figures 5.5a–5.5d) the primary and secondary tip vortices

are generated from the leading and side edges along the top surface of the prism, respectively.

Further downstream, tip vortices transport closer to the ground due to the downwash flow while

secondary tip vortices interact with the upper vortex. Secondary tip vortices diminish beyond

x/d = 3 and vanish completely at x/d = 10. Thus, secondary tip vortices and upper vortex only

appear in the near vicinity of the prism, while the primary tip vortex remains in the downstream

wake and results in the formation of Dipole-type wake topology. Quardupole wake (Figures 5.5i–

5.5l) features streamwise vortices of nearly equal strength (in terms of circulation) at x/d = 10. In

case of Multipole wake topology, the interaction of secondary tip vortex with upper vortex appears

to prolong till x/d = 10, which results in a Multipole structure similar to one observed by Zhang

et al. (2017).

Now, quantitative evaluation of the strength of the primary tip vortex (TV1) and the upper vortex

(UV ) downstream the wake are presented in Figure 5.6. The strength of vortices are quantified

in terms of circulation (Γ), which is the area integral of vorticity (Chapter 4 and Section 3.8)

normalized by the free-stream velocity (Ub) and prism width (d). The strength of tip vortex initially

reduces till x/d = 2. The weakening of vortex structures can be attributed to their interactions with

the recirculation region behind the prism. In case of Quadrupole wake, a sharp increase in Γ is

followed by a gradual drop till x/d = 10, while the change remains negligible for Dipole wake.

Thus, it becomes clear that the primary tip vortex decays less rapidly and remains dominant in

the downstream wake for all wake topologies. The upper vortex, however, decays rapidly for all

wakes, as evident from the sharp drop in the strength of the upper vortex in Figure 5.6b.
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Figure 5.6: Variation in Circulation (Γ/Ubd) of primary tip vortex (TV1) and upper vortex (UV ).
Shown are Dipole (DR= 1 at Re= 2.5×102), Multipole (DR= 1 at Re= 3×102), and Quadrupole
(DR = 1 at Re = 3.5×102).

5.1.2 Effects of downwash and upwash flows

It is already established from the results in Chapter 4 that free-end vortices dictate the wake of

wall-mounted prisms, which is why it becomes important to investigate their influence on

changing wake topology. As such, contours of time-averaged normal velocity (v) at z/d = 0 for

different wake topologies are presented in Figure 5.7. Red and blue regions correspond to upwash

and downwash flow, respectively. Upwash flow is evident at the leading edge for all cases,

resulting from shear-layer separation at the leading edge of the prism. This further results in an

upward curvature of streamlines, as noted by Zargar et al. (2021b). A region of downwash flow is

apparent in front of the prism, which is related to the horseshoe vortex (Simpson, 2001). In case

of Dipole-type wake, downwash flow dominated the wake close to the prism and further

downstream. This is consistent with the observation from Figure 5.3. As the wake evolves from

Dipole to Multipole, and further into Quadrupole-type, increasing intensity of upwash flow is

apparent from Figures 5.7a, 5.7b, and 5.7c. The Multipole wake features the prolonged

interaction of the tip and upper vortex in downstream wake.
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Figure 5.7: Contours of time-averaged normal velocity (v/Ub) with wake topology identified
using line contours of ωxd/Ub on top-right. Shown are (a) DR = 1 at Re = 2.5×102, (b) DR = 1
at Re = 3×102, and (c) DR = 1 at Re = 3.5×102. Contours are shown at z/d = 0.

Quantitative investigation of the intensity of downwash flow is presented by looking at the

trends of saddle point (Ys/d) in Figure 5.8. Saddle point indicates the balance between upwash and

downwash flows (Wang and Zhou, 2009), and thus provides a quantitative measure to study the

influence of downwash flow. Saddle points are marked by “∗′′ in Figure 5.7. When upwash flow

dominates, saddle point appears above the mid-plane of the prism (Ys/d ≥ 0.5). It appears closer to

the ground (Ys/d < 0.5) when downwash flow dominates. A correlation exists between the wake
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Figure 5.8: The location of saddle point (Ys/d) as a function of Re and DR for prisms with Aspect-
ratio of 1. Note: the vertical axis is non-linear, representing depth-ratios between 0.016–4.

map and the location of saddle points, such that the Quadrupole-type wake appears at the region

of dominant upwash flow. Dipole and Multipole type wakes are observed in cases that downwash

flow dominates, while Multipole wake appears when the saddle point is closer to the mid-plane

(Ys/d ≈ 0.5). Figure 5.8 identifies, by inspection and based on the mean wake map in Figure 5.1,

the boundary of evolution between various mean wake topologies. These results further hint at the

role of downwash flow in describing the mean wake of small aspect-ratio prisms.

The effect of free-end on mean velocity for all cases is presented in Figure 5.9. For all wake

topologies, mean axial velocity (u) depends strongly on y because of the end-effects, such that

u is negative along most of the span of the prism (y/d ≤ 1) for x/d ≤ 3 (Figure 5.9a). Further,

u corresponds strongly with the size of reverse flow zone near the prism (x/d ≤ 3). Increasing

the intensity of upwash flow, as a result of evolution of mean wake to quadrupole wake, results

in a larger recirculation region behind the prism (Wang et al., 2006; Zargar et al., 2021b). As

such, Quadrupole wake results in larger recirculation zone compared to the Dipole-wake, which

is attributed to a strong upper vortex (upwash flow) in case of Quadrupole-wake. This contributes

to a significant reverse flow region. Further downstream, a prolonged velocity deficit is noted
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Figure 5.9: Spanwise variation of time-averaged (mean) axial (u/Ub) and normal velocity (v/Ub)
for different wake topologies. Shown are Dipole (DR = 1 at Re = 2.5×102), Multipole (DR = 1
at Re = 3×102), and Quadrupole (DR = 1 at Re = 3.5×102).

for Quadrupole and Multipole wakes, which correlates with a larger recirculation region due to

significant upwash flow. The profiles of mean normal velocity (v) exhibit a strong dependence

on end-effects as seen in Figure 5.9b. Close to the prism at x/d = 1, due to a strong region of

upwash flow in case of Multipole wake, v is mostly negative in the span of the prism. In the region

of x/d ≥ 3, the influence of downwash flow becomes apparent, such that Dipole-wake results in

smaller deficit of v compared to Quadrupole-wake. In other words, the upwash flow enhancement

results in larger deficit of v in a Quadrupole-wake. The free-end downwash flow is pushed up by

the upwash flow, which results in a shift in peak of v closer to the prism tip. This is attributed to

the wake evolution from Dipole to Quadrupole-type, in which case the upper vortex (upwash flow)

enhances rapidly (Sumner et al., 2004; Wang et al., 2006).

Downwash and upwash flows have a significant effect on the shear-layer roll-up behind the

prism, which further leads to the formation and convection of streamwise vortex structures

downstream (Wang and Zhou, 2009). Formation and convection of these streamwise vortex

structures is associated with streamwise momentum transport due to the second-order central

moments or co-variance of velocity fluctuations, which are axial (u′u′) and shear stresses

(u′v′) (Wang and Zhou, 2009). Since u′v′ accounts for stirring and mean momentum transport, it



Chapter 5. Mean wake evolution behind wall-mounted prisms 126

0 2 4 6 8 10
x/d

0.000

0.002

0.004

0.006

0.008

0.010

−
u
′ v

′ /
U

2 b

Increasing
DR

(a) Varying depth-ratio

0 2 4 6 8 10
x/d

0.000

0.002

0.004

0.006

0.008

0.010

−
u
′ v

′ /
U

2 b

Decreasing
Re

Quadrapole Wake

Multipole Wake

Dipole Wake

(b) Varying Reynolds number

Figure 5.10: Streamwise variation of maximum shear stress (−u′v′), normalized by free-stream
velocity (Ub). Shown are Dipole (DR = 1 at Re = 2.5×102), Multipole (DR = 1 at Re = 3×102),
and Quadrupole (DR = 1 at Re = 3.5×102).

enables a deeper insight into the interactions of upper (v′ > 0) and tip vortex (v′ < 0) with the

free-stream flow (u′ > 0). Moreover, the co-variance of velocity fluctuations present a

fundamental quantity to analyze the flow dynamics of shear-flows, such as that of wall-mounted

prisms. Zdravkovich (2003) and Chapter 4 have shown that a stronger downwash flow leads to the

elongation of the shear-layer and widening of the near-wake. Figure 5.10a shows the variation in

magnitude of maximum shear stress (u′v′) as the wake evolves with increasing depth-ratio. In

case of a Quadrupole wake, due to intense upwash flow (v′ > 0), the maximum value of u′v′

occurs close to x/d = 5. Increasing the depth-ratio leads to a stronger tip vortex (v′ < 0), causing

a shift in the peak of maximum u′v′ closer to the prism trailing edge. Further increasing

depth-ratio leads to a Dipole wake with a stronger downwash flow, which significantly suppresses

the streamwise momentum transfer (u′v′). Suppression of u′v′ remains consistent as the wake

evolves with decreasing Reynolds number in Figure 5.10b.

Quantitative comparison of u′u′ and u′v′, at multiple axial locations for the Quadrupole,

Multipole and Dipole-type topologies, is presented in Figure 5.11. Distribution of u′u′ exhibits a

stronger dependence on changing depth-ratio and Reynolds number, such that enhancing and

decaying vortex structures are visible from the profiles (Figure 5.11a). A peak noted at
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Figure 5.11: Streamwise variation of axial (u′u′) shear stress (u′v′) normalized by free-stream
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1 ≤ y/d ≤ 2 is associated with the spread of tip vortex, a smaller peak is observed closer to the

ground, which is associated with the upper-vortex. As the wake transforms from Quadrupole to

Dipole topology, the upper-vortex appears to diminish, while tip vortex becomes stronger. At

x/d = 5, the secondary peak deteriorates, hinting at deteriorating upper-vortex with increasing

depth-ratio. Trends of u′v′ in the downstream wake (Figure 5.11b) show that the magnitude of u′v′

is largest for Quadrupole-type wake, as compared to Multipole and Dipole wake. This is mainly

attributed to the significant influence of upwash flow (v′ > 0) in Quadrupole-type wake. These

results are consistent with previous observations in Figure 5.10a. At x/d = 5, the magnitude of

u′v′ for Multipole and Dipole-type wake diminish significantly. The suppression of u′v′ is

attributed to deteriorating upper-vortex (v′ > 0), which significantly reduces the spanwise

momentum transfer.

Figure 5.12 shows the quantitative comparison of u′u′ and u′v′, at multiple axial locations for

the Dipole (DR = 1 at Re = 400), Multipole (DR = 1.5 at Re = 4×102), and Quadrupole (DR = 2

at Re = 4× 102) wakes. In this case, the wake patterns evolve under changing depth-ratios at

Re = 4× 102, as opposed to changing Reynolds numbers (in Figure 5.11). The trends remain

consistent with that of Figure 5.11, which shows that this phenomenon remains invariant to flow or



Chapter 5. Mean wake evolution behind wall-mounted prisms 128

0.000 0.025

u′u′/U2
b

0.0

0.5

1.0

1.5

2.0

y
/d

x/d = 1

0.000 0.025

u′u′/U2
b

x/d = 3

0.000 0.025

u′u′/U2
b

x/d = 5

(a) Axial stress

0.0000 0.0025

u′v′/U2
b

0.0

0.5

1.0

1.5

2.0

y
/d

x/d = 1

0.000 0.001

u′v′/U2
b

x/d = 3

0.000000.00025

u′v′/U2
b

x/d = 5
Dipole Wake

Multipole Wake

Quadrapole Wake

(b) Shear stress

Figure 5.12: Streamwise variation of axial (u′u′) shear stress (u′v′) normalized by free-stream
velocity (Ub). Shown are Dipole (DR = 1 at Re = 4×102), Multipole (DR = 1.5 at Re = 4×102),
and Quadrupole (DR = 2 at Re = 4×102) wakes.
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Figure 5.13: Line contours of ωxd/Ub (solid blue lines: positive values, dashed red lines: negative
values) showing evolution from Quadrupole to Dipole wake, at x/d = 5, with increasing depth-ratio
at Reynolds number of 2.5×102.

geometrical parameters. Instead it only depends on the evolution of wake topology. As the wake

evolves from Quadrupole to Dipole, the peak close to the ground diminishes, while that near the

free-end becomes stronger. This correlates with the deterioration of upper vortex and strengthening

of the tip vortex.

The effect of deteriorating upper-vortex on the mean wake evolution can be qualitatively

observed in Figure 5.13. At a particular Reynolds number, for example 2.5× 102, the wake map

in Figure 5.1 shows that mean wake changes from Quadrupole (at DR = 0.7) to Multipole wake

(at DR = 0.8 − 0.9), followed by Dipole-type wake (at DR = 1). Line contours of ωx in
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Figure 5.14: Time-averaged streamlines, overlaid by contours of Cp, at spanwise plane of (a,b)
y/d = 0.5 and (c, d) y/d = 0.95 for (a,c) Dipole and (b,d) Quadrupole-type wakes, along with
mean velocity vectors in the top-right corner. Shown are (a,c) DR = 1 at Re = 2.5×102, and (b,d)
DR = 1 at Re = 3.5×102.

Figure 5.13 show this variation in the cross-sectional plane at x/d = 5. The upper vortex

deteriorates, leading to the evolution of mean wake topology from Quadrupole to Dipole-type

with increasing depth-ratio (or decreasing Reynolds number). To scrutinize the mechanism of

evolution this study needs to further evaluate the deterioration of upper vortex. Previous

studies (Rastan et al., 2021) and results of Chapter 4 have reported that flow reattachment on the

prism surfaces with increasing depth-ratio results in the suppression of streamwise vortex

structures. Here, side shear-layer reattaches to the surface at DR = 1 at Re = 2.5× 102. Flow



Chapter 5. Mean wake evolution behind wall-mounted prisms 130

x/d

y
/d

(a) Dipole Wake
x/d

y
/d

(b) Quadrupole Wake

Figure 5.15: Time-averaged streamlines, overlaid by contours of Cp at normal plane of z/d = 0 for
(a) Dipole and (b) Quadrupole-type wakes. The bold black line shows the mean velocity streamline
of u/Ub = 0. Shown are (a) DR = 1 at Re = 2.5×102, and (b) DR = 1 at Re = 3.5×102.

reattachment also plays an important role in the suppression of u′v′ (Figures 5.10a and 5.11b)

since the flow reattachment led to the suppression of velocity gradients downstream.

Figure 5.14 shows mean streamlines plots overlaid by contours of Cp at spanwise planes of

y/d = 0.5 and 0.95 for Dipole (DR = 1 at Re = 2.5×102) and Quadrupole (DR = 1 at Re = 3.5×

102) wakes. At y/d = 0.5, recirculation region behind the Dipole wake appears narrower compared

to the Quadrupole wake. Moreover, the length of recirculation region for Quadrupole wake is larger

compared to Dipole wake. The result is consistent with the concept that a predominant downwash

flow suppresses the streamwise vortex dynamics in case of Dipole wake, thus reducing the length

of reverse flow zone. Near the prism tip (y/d = 0.95), the influence of downwash flow is clearly

noted such that the Quadrupole wake reverse flow region extends beyond x/d = 3, while it is

limited to x/d ≈ 1.5 for Dipole wake. The contours of Cp also note an adverse pressure gradient

on the side edge for Dipole wake, which suggests a reattachment of flow on prism surfaces. In case

of Quadrupole wake, while such adverse pressure gradient exists, there is a monotonic recovery of

pressure behind the prism suggesting a partial or no reattachment of flow on sides of prism. The

mean velocity vectors presented on the top-right corner of Figure 5.14 provides further evidence

of flow reattachment. It become clear that reattachment of flow occurs near the prism trailing edge

at y/d = 0.5 for the Dipole wake, while no reattachment is noted for the Quadrupole wake. At

y/d = 0.95, both cases show a reattachment of flow near the prism leading edge, where tip vortices
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Figure 5.16: Streamwise axial velocity gradient (∂u/∂x) normalized by prism width (d) and
free-stream velocity (Ub). Shown are Dipole (DR = 1 at Re = 2.5× 102), Multipole (DR = 1 at
Re = 3×102), and Quadrupole (DR = 1 at Re = 3.5×102) wakes. Profiles are shown at x/d = 5.

emanate. This is further corroborated by a larger angle of flow curvature in case of Quadrupole

wake, as opposed to a smaller angle for Dipole wake. Figure 5.15 shows the mean streamlines plots

overlaid by contours of Cp at normal plane of z/d = 0 for Dipole (DR = 1 at Re = 2.5×102) and

Quadrupole (DR = 1 at Re = 3.5×102) wakes. The bold black line on the plot features the mean

streamline of u = 0, showing the mean recirculation region behind the prism. The observations

remain consistent here, such that a flow reattachment is noted on the prism top surface in case of

Dipole wake, while no reattachment is noted for Quadrupole wake. The monotonic recovery of

pressure in case of Quadrupole wake is evident until x/d ≈ 2, and u = 0 extends into the wake

suggesting no reattachment on the prism top surface.

Figure 5.16 further shows the suppression of velocity gradients for Multipole and Dipole-type

wakes, while a larger velocity gradient is observed for the Quadrupole wake. Suppression of

velocity gradient results from the reattachment of flow for Dipole wake, which further confirms

the distortion of upper vortex as a result of the reattachment. It is evident from Figure 5.11a that a

deficit in axial momentum (u′u′) is noted favoring the Quadrupole wake, as the wake evolves from

Dipole to Quadrupole topology. This excess u′u′ is associated with the presence of two streamwise
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vortex structures, tip and upper vortices, forming the Quadrupole wake. The shift in u′u′ towards

the prism tip is due to the influence of upwash flow (v′ > 0). Thus, it becomes apparent that with

increasing depth-ratio (or decreasing Re), a momentum deficit is induced due to the distortion of

a streamwise vortex pair. This momentum deficit in turn results in the suppression of velocity

gradients via an adverse pressure gradient behind the body. This leads to flow reattachment and

wake evolution in the process.

5.2 Summary

The mean wake of a small aspect-ratio wall-mounted prism is evaluated at a range of depth-ratios

(0.016− 4) and Reynolds numbers (5× 101 − 5× 102), to identify and characterize the evolution

of mean wake topology. The focus of this analysis is the mean wake evolution with increasing

depth-ratio to ascertain the related mechanism. A wake map is presented first, which classified the

mean wake topology as Dipole-type, Multipole and Quadrupole-type wakes at a range of Reynolds

numbers and depth-ratios. This classification is based on the number of streamwise vortex pairs,

which are the tip and upper-vortices, appearing in the downstream wake. A Multipole, intermediate

wake pattern is observed as the evolutionary structure between Quadrupole and Dipole-type wakes.

This classification indicated a strong multivariate influence on mean wake evolution such that the

threshold depth-ratio changes with Reynolds number, while all prism studies had limited their

geometrical study to variations of aspect-ratio.

To understand the mean wake evolution and its mechanism, three factors are investigated that

govern the wake of small-aspect-ratio prisms: (1) strength of the downwash flow, (2) influence of

upwash and downwash flow on the momentum transfer, and (3) interactions of tip and upper vortex

in the symmetry plane. First, the role of downwash flow and tip vortex is established in dictating

the downstream wake of small aspect-ratio prisms using quantitative comparison of the location

of saddle points (Ys/d). Then, the influence of downwash and upwash flow on the formation

and convection of streamwise vortex structures are observed in the wake. With increasing depth-
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ratio, downwash flow intensifies, leading to suppression of the spanwise momentum transfer (u′v′).

Further, axial (u′u′) and shear stress (u′v′) trends characterize a deteriorating upper vortex with

increasing depth-ratio, which is further confirmed through wake analysis. Interaction of tip and

upper vortex in the symmetry plane is analyzed, which attributed the deterioration of upper vortex

to the flow reattachment to the prism surfaces with increasing depth-ratio. A strong downwash

flow leads to flow reattachment to the prism top and side surfaces with increasing depth-ratio.

This results in the suppression of streamwise momentum transport by u′v′ and velocity gradients

under the dominant downwash flow (v′ < 0). Thus, mean wake evolution between Quadrupole and

Dipole-type occurs due to deterioration of the upper vortex with increasing depth-ratio.
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Chapter 6

IMPACT OF DEPTH-RATIO ON

SHEAR-LAYER DYNAMICS AND WAKE

INTERACTIONS
‡

The role of depth-ratio and multivariate interactions between the shear layer, wake structures,

and prism surfaces have already been discussed at low Reynolds numbers (5× 101 − 5× 102).

A detailed understanding of the flow dynamics around wall-mounted prisms were explored for

this regime in Chapters 4 and 5. However, low Reynolds number flow dynamics may not fully

capture the complexities at moderate or high Reynolds numbers, where the flow transitions to

turbulence. At moderate and high Reynolds numbers, as discussed in Section 2.3, flow separates

at the leading edge of the prism, forming a shear layer that rolls up into a train of small-scale

vortices, leading to Kelvin-Helmholtz instabilities (KHI). These instabilities significantly influence

the pressure distribution on the prism surfaces and contribute to the formation of downstream

structures, such as hairpin-like vortices (Tenaud et al., 2016). Hairpin-like vortices, as large-scale

coherent structures, play a critical role in momentum transfer and mixing processes. Thus, at

‡The content of this chapter has been published in Physics of Fluids under the citation (Goswami and Hemmati,
2024): “Goswami, S., & Hemmati, A. (2023). Impact of depth-ratio on shear-layer dynamics and wake interactions
around wall-mounted prisms. Physics of Fluids, 36(11):115–149”.
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moderate Reynolds numbers, wake dynamics are dictated by the interactions between KHI rollers

and coherent structures. Studies on infinite-span rectangular prisms (outlined in Section 2.3) reveal

that varying the depth-ratio affects the evolution and interactions of KHI rollers with large-scale

flow dynamics. However, the impact of free-end effects and prism depth-ratio on these interactions

for wall-mounted prisms remains unexplored.

This chapter investigates the formation and evolution of Kelvin-Helmholtz instability and its

interactions with coherent wake structures, such as hairpin-like vortices, behind wall-mounted

prisms. The focuses is on prisms with AR = 0.25−1.5 and DR = 1−4 at Re = 1×103−2.5×103,

using Large Eddy Simulations (LES) with the Dynamic Smagorinsky sub-grid scale model, as

detailed in Chapter 3. Primary analysis emphasizes cases with AR = 1, DR = 1 and 4 at Re =

2.5× 103, representing a robust framework to examine complex wake behavior under extreme

geometric parameters. This chapter is structured such that the results and discussion are presented

in Section 6.1, followed by a summary of key findings in Section 6.2.

6.1 Results and Discussion

The wake visualization and analysis reveal the formation of distinct Kelvin-Helmholtz Instability

rollers across the parameter space studied here. The KHI rollers emanate from the leading edge

shear layer, characterized by their high-frequency signatures. These significantly impact the

pressure distribution on the prism surfaces and contribute to forming downstream wake structures,

such as the hairpin-like vortices. To better evaluate and characterize these wake features, this

study focuses on two critical cases at the highest Reynolds number studied here, Re = 2.5× 103.

The case of AR = 1, DR = 1 and 4 exhibit the most important wake features that are of interest in

this study, across two extreme ends of our parameter space. While these cases may not exhibit

wake complexities that belong to a unique parameter setting, they do feature wake systems that

are observed similarly across all AR,DR and Re considered here. First, a qualitative illustration of



Chapter 6. Impact of depth-ratio on shear-layer dynamics and wake interactions 136

Flow

Vortex roller

Hairpin-like

vortex

(a) DR = 1

Flow

Vortex roller

Hairpin-like

vortex

(b) DR = 4

Figure 6.1: Instantaneous flow realizations identified using Q∗ = 10 and overlaid with contours of
streamwise velocity (u) for (a) DR = 1 and (b) DR = 4 at Re = 2.5×103.

the flow is provided. To this end, the Kelvin-Helmholtz instability (KHI) and its interactions with

the coherent flow structures, affecting various flow parameters, are analyzed

Instantaneous flow realizations using Q-criterion (Jeong and Hussain, 1995) overlaid with

streamwise velocity (u) contours are presented in Figure 6.1 for DR = 1 and DR = 4 at

Re = 2.5× 103. These plots also feature zoom-in inset focusing on the leading-edge shear-layer

separation (top-left corner). The instantaneous wake exhibits a shear-layer separation at the

leading edge, followed by a roll-up and shedding of hairpin-like vortices in the wake. Four major

vortical structures are observed around the prism: horseshoe vortices in the front, leading-edge

roll-up, spanwise and normal vortex rollers immediately following the roll-up, and hairpin vortex

shedding. Flow over the top surface, separating from the leading edge, reattaches for the case of

DR = 4, while it sheds directly into the wake for a shorter prism, DR = 1. The flow reattachment

aligns with the dominant downwash phenomenon that was previously observed in Chapters 4 and

5 for prisms with increasing depth-ratio.

Figure 6.1 reveals a laminar separating flow profile for x/d < 0.5, characterized by a flat and

continuous layer of spanwise vortical motion. The leading-edge shear layer undergoes distinct

stages of growth, primary instability formation, and transition, ultimately leading to its

breakdown (Chiarini and Quadrio, 2021), which triggers the emergence of Kelvin-Helmholtz
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instability. These are manifested as finite spanwise rollers in the shear layer (Tenaud et al., 2016;

Moore et al., 2019a), which resemble vortex tubes in the zoomed-in inset of Figure 6.1. KHI

rollers exhibit high-frequency signatures that significantly impact the pressure distribution on the

prism surfaces and contribute to downstream structures, for example hairpin-like vortices.

Notably, these vortex tubes extend into the wake for DR = 1, while they appear on the prism

surfaces for DR = 4. Similar vortex tubes are also observed on the side surfaces of both prisms. It

is observed that KHI rollers are more pronounced for DR = 4, with more rollers and intense

spanwise vortical motion. Moreover, KHI rollers exhibit modulations in the spanwise direction,

resembling wave-like structures shown in Figure 6.1b. These modulations become more

pronounced for DR = 4. The difference in streamwise velocity above and below the rollers

intensifies these modulations, leading to the stretching and folding of rollers into hairpin-like

vortices that shed downstream.

Previous studies have observed Kelvin-Helmholtz instabilities involving infinite-span,

rectangular prisms (Tenaud et al., 2016; Moore et al., 2019a; Chiarini and Quadrio, 2021). In

these investigations, KHI manifests in the form of long spanwise vortex tubes near the leading

edge, initially exhibiting spanwise invariance but later developing spanwise modulation. The

qualitative observations in the present study are consistent with the literature (Chiarini and

Quadrio, 2021). There are limited studies on wall-mounted prisms, which have examined the

occurrence of KHI. For example, (Rastan et al., 2021) documented the generation of

Kelvin-Helmholtz-like vortices from the leading-edge shear-layer on side surfaces of a square

prism with an aspect-ratio 7. They further elaborated on the impact of downwash flow in the

wake, which leads to the suppression of vortices downstream. These observations were consistent

with earlier experiments of Wang and Zhou (2009), where similar Kelvin-Helmholtz-like vortices

were noted in the wake of a finite square prism. In both studies, co-rotating vortices resulting

from KHI were observed in the wake, where flow interactions and a dominant downwash flow

suppressed any impact of such instabilities on the flow. This dissertation presents the very first

study to identify the presence of KHI rollers in the wake of a finite wall-mounted prism with a
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small aspect-ratio and large depth-ratio. This study holds significant implications for

understanding the flow dynamics around wall-mounted prisms, particularly the interactions

between KHI and hairpin-like vortices, which is a precursor to the turbulence transition

phenomenon.

Based on the present results, it is hypothesized that the presence of KHI rollers in the wake

of a wall-mounted prism is influenced by the depth-ratio. At moderate Reynolds numbers, an

increase in depth-ratio leads to an enhanced interaction between KHI and Kármán-like vortices,

which in turn enhances vortex shedding in the wake. This is evident from the increased number

of KHI rollers and the intense spanwise vortical motion observed for DR = 4 in Figure 6.1b.

Further, these interactions are expected to significantly impact the pressure distribution on the

prism surfaces, as well as the formation of downstream structures, such as hairpin-like vortices.

In the following sections, a detailed analysis of KHI and its interactions with the coherent flow

structures are provided, affecting various flow parameters, starting with mean and instantaneous

flow characteristics, flow periodicity, and the frequency of KHI rollers.

6.1.1 Mean Flow Characteristics

Time-averaged (mean) velocity field around the prism is presented in Figure 6.2. Contours of

mean axial velocity (u/Ub) are overlaid with mean streamlines for DR = 1 and 4 at z/d = 0 and

y/d = 0.5. Due to flow symmetry, resulting from the time-averaged quantities, only one side of

the domain is shown at y/d = 0.5. The dotted streamlines identify regions of negative streamwise

velocity. The flow separates at the leading edge for both prisms, and the separated shear layer

extends into the wake region for DR = 1, while it attaches to the prism top and side surfaces with

DR = 4. The shear-layer reattachment occurs at xR/d ∼ 2.12 and xR/d ∼ 2.09 on the top and side

surfaces, respectively. These observations are consistent with previous literature on the increasing

dominance of downwash flow with depth-ratio (Rastan et al., 2021). A secondary recirculation

bubble is noted near the leading edge on the prism top surface, which is absent in the case of

small depth-ratio prisms. This secondary recirculation bubble is characterized by a region of
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Figure 6.2: Contours of mean axial velocity (u/Ub) overlaid with mean streamlines for (a,c)
DR = 1 and (b,d) DR = 4 at (a,b) z/d = 0 and (c,d) y/d = 0.5. Dotted axis indicates the line of
symmetry. Dotted streamlines show negative streamwise velocity regions.

negative streamwise velocity, as shown by the dotted streamlines in Figure 6.2. Furthermore, a

secondary recirculation bubble appears for both short and long prisms on the side surfaces.

Previous studies (Mashhadi et al., 2021; Rastan et al., 2021; Kumahor and Tachie, 2022) have

established that a secondary recirculation bubble forms due to an adverse pressure gradient

induced by the decelerating reverse flow near the leading edge. Moreover, the existence of

secondary recirculation region is linked to shear-layer flapping motion and the formation of KHI

rollers on the prism surfaces.

The shear-layer structure and behavior are investigated by examining the turbulence kinetic

energy (k). Contours of k are presented in Figure 6.3 for DR = 1 and 4 at z/d = 0 and y/d = 0.5,

where‘×’ marker shows the location of maximum turbulence kinetic energy. These contours reflect

the shear-layer structure, with the maximum value of k occurring downstream of the prism leading-

edge. In case of a short prism, an elevated region of k occurs downstream of the trailing edge, while

similar elevated region of k is noticed over the top surface of a long prism. The high values of k
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Figure 6.3: Contours of turbulence kinetic energy (k/U2
b ) for (a,c) DR = 1 and (b,d) DR = 4 at

(a,b) z/d = 0 and (c,d) y/d = 0.5. Dotted axis indicates the line of symmetry.‘×’ marker shows
the location of maximum turbulence kinetic energy.

are associated with the interactions between the wake and the shear layer, which make the flow

highly incoherent. In other words, turbulent energy (k) is large inside the leading-edge shear-layer,

which interacts with the wake later on and results in mixing. This leads to further enhancement

of k in these regions. For DR = 4, the peak in k occurs close to the location of flow reattachment

on the prism surfaces. Region of weaker k at the trailing edge is also noted. The latter region is

attributed to the formation and interactions of vortices in the wake, while the former (near the flow

reattachment) is attributed to the interactions of Kelvin-Helmholtz instability rollers with the wake.

The mean flow characteristics further elaborate on two important observations regarding the

interactions of KHI rollers with coherent structures (wake). First, the presence of secondary

recirculation bubbles on the prism surfaces is linked to the shear-layer flapping motion and the

formation of KHI rollers (Cimarelli et al., 2018). The occurrence of shear-layer flapping motion is

exclusive to the case of DR = 4, as it necessitates a surface for interaction (Ma et al., 2023).

Second, the maximum turbulence kinetic energy is observed in regions where KHI rollers interact
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with the wake. These observations are reinforced by the instantaneous flow realizations in

Figure 6.1, which depicted the interaction of KHI rollers with the wake. Although the mechanism

of interaction remains beyond the scope of this discussion, these findings examine the location

and extent of interactions as a function of depth-ratio. Since the maximum value of k occurs in

regions where the interactions take place, comparing the maximum values provides insights into

the intensity of interactions. Maximum k for DR = 4 is approximately 40% larger than DR = 1 on

either surface, suggesting a greater intensity of interactions in the case of a larger depth-ratio

prism. Furthermore, the maximum value of k associated with the top surface shear-layer is

approximately 11% and 48% larger, compared to the sides for DR = 1 and 4, respectively. This

indicates that the top surface shear-layer dominates as the primary factor influencing downstream

wake.

6.1.2 Flow periodicity and Instantaneous Flow Characteristics

Frequency of the KHI rollers is determined using premultiplied power spectral density of

streamwise (Eu), normal (Ev), and spanwise velocity (Ew) for DR = 1 and DR = 4. Since KHI

occurs closer to the leading edge of the prism, velocity signals were tracked at

(x/d,y/d,z/d) = (0.5,1.3,0). The rationale behind pre-multiplying the spectrum by the

frequency is to facilitate the visualization of energy distribution across scales on a logarithmic

plot. This transformation ensures that equal areas under the curve represent equal contributions to

the total energy, providing a more intuitive representation of energy content at different scales.

The spectra are computed using Welch’s averaged modified periodogram method (Welch, 1967)

for streamwise (Eu), normal (Ev), and spanwise (Ew) velocity fluctuations. The results are

presented in Figure 6.4, where three dominant flow features are identified: (i) Stsh, associated with

the shedding of hairpin-like vortices in the wake, (ii) Stkh, corresponding to the frequency of

Kelvin-Helmholtz instability rollers, and (iii) 2Stkh, associated with high-frequency harmonics.

Further, a sub-harmonic frequency is noted in the case of spanwise (Ew) velocity fluctuations for
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Figure 6.4: Premultiplied power spectral density of streamwise (Eu), Normal (Ev), and Span-wise
velocity (Ew) fluctuations at at (x/d,y/d,z/d) = (0.5,1.3,0) for (a) DR = 1 and (b) DR = 4.

DR = 1, which vanishes at larger depth-ratios. This sub-harmonic frequency is associated with

secondary vortex structures that appear alternatively on either side of the prism (see Chapter 4).

Hairpin-like vortices shed at Stsh = 0.171 and 0.173 for DR = 1 and 4, respectively, agree

well with Diaz-Daniel et al. (2017b). Frequency of KHI rollers (Stkh) are 0.855 and 1.29 for

DR = 1 and 4, respectively. The significantly higher KHI frequency for DR = 4 aligns with the

stronger spanwise vortical motion observed in Figure 6.1. Similarly, higher frequency hairpin-like

vortex of the for DR = 4 suggests a more complex wake structure. Lander et al. (2018) proposed

a correlation for infinite-span square prisms that links the relative influence of KHI and large-

scale shedding with Reynolds number (Re): Stkh/Stsh = 0.18×Re0.6. In the present study, the

ratio of frequencies for KHI-to-hairpin vortex (Stkh/Stsh) are ∼ 5.0 and ∼ 7.5 for DR = 1 and 4,

respectively. The criterion given by Lander et al. (2018) predicts a ratio of ∼ 18 at the current

Reynolds number. This significant discrepancy highlights that KHI is not only a function of Re,

rather it is significantly influenced by free-end effects, such as downwash flow induced by wall-

mounted prisms. Furthermore, increasing Stkh/Stsh with DR = 4 suggests a stronger interaction

between KHI and hairpin shedding, consistent with the stronger spanwise vortical motion observed

in Figure 6.1 as well as the observations in Figure 6.3.
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Figure 6.5: Instantaneous span-wise vorticity field for (a,b) DR = 1 and (c,d) DR = 4 at z/d = 0.
The time increment, t∗ = d/Ub fkh, where fkh is the frequency of KHI rollers.

Figure 6.5 shows contours of the instantaneous spanwise vorticity field at z/d = 0 for DR = 1

and 4. The time increment corresponds to the period of KHI rollers, t∗ = d/Ub fkh, where fkh is the

frequency of KHI rollers. For both cases, KHI roll-up and vortex pairing can be seen downstream

of the leading edge. However, trajectory of the rollers is significantly different. For DR = 1, rollers

are shed into the wake, while the rollers are shed towards the wall before shedding into the wake

downstream for DR = 4. This mechanism is referred to as shear-layer flapping motion (Moore

et al., 2019a), which is attributed to an oscillating reattachment point on the prism surfaces. The

shear-layer flapping motion creates a complex interaction between KHI rollers and hairpin-like

vortices in the wake, leading to a more complex wake structure for DR = 4. Furthermore, shear-

layer flapping on the prism surface leads to an impingement of flow on the prism surfaces, which

is absent in the case of DR = 1. This flow impingement creates a favorable pressure gradient and

peak pressure fluctuation on the surface of the prism. This phenomenon is discussed later in this

dissertation.
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Flow dynamics behind wall-mounted prisms are significantly different from those of

infinite-span prisms, which further contribute to a suppressed Stkh/Stsh, as noted earlier. The flow

around wall-mounted prisms, as opposed to infinite-span prisms, are significantly influenced by

three-dimensional effects, such as the presence tip and base vortices (Wang and Zhou, 2009).

These three-dimensional effects are further influenced by the depth-ratio of the prism, leading to a

more complex wake structure. For example, Chapter 4 noted enhancement of the dominant

downwash flow with increasing depth-ratio, which suppressed the vortex shedding at low

Reynolds numbers. Similar downwash flow was observed to suppress both tip and base vortices

behind a large aspect-ratio prism at high Reynolds number (Rastan et al., 2021). The present

study extends these observations to the interaction of KHI rollers with hairpin-like vortices in the

wake.

Instantaneous axial velocity profiles (u/Ub) at z/d = 0 for DR = 1 and 4 are depicted in

Figure 6.6. The profiles are segmented into two regions, A and B, based on the regions of

shedding flow structures. Region B encompasses the primary vortex shedding region, while

region A represents the area of reverse flow beneath the leading-edge shear-layer, indicated by

dotted red lines tracing the shear-layer trajectory. A laminar profile is evident at the leading-edge

in both cases. Downstream, velocity deficit increases in Region B due to interactions of KHI

rollers with coherent flow structures. For DR = 1, the shear-layer directly sheds into the wake, as

seen in the trajectory within Region B. Initially, a velocity deficit appears in Region A near the

leading-edge (x/d ≤ 0.4), mainly due to a secondary reverse flow region forming at the

leading-edge. Overall, instantaneous velocity profiles on the top surface for the case of DR = 1

exhibit no apparent interactions since the shear-layer sheds directly into the wake. In contrast, for

the prism with DR = 4, the shear-layer trajectory initially grows up to x/d ∼ 1.5, after which it

collapses towards the wall. In Region A, the velocity deficit is more pronounced, attributed to the

presence of a secondary recirculation bubble. The deficit in Region A disappears at x/d = 2,

coinciding with flow reattachment, followed by a velocity influx in Region A at 2 ≤ x/d ≤ 2.5,

primarily due to flow impingement on the top surface of the prism. This impingement creates a
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Figure 6.6: Instantaneous axial velocity profiles (u/Ub) at z/d = 0 for (a) DR = 1 and (b) DR = 4.
Dotted red lines show the trajectory of shear-layer.

favorable pressure gradient and a peak in pressure fluctuation on the prism surface, which is

explained in detail later. In Region B, a velocity deficit initiates at x/d = 2 and persists as the flow

progresses downstream, with intermittent variations that are indicative of oscillating KHI rollers.

The interactions between these KHI rollers and the wake are further analyzed using the trends

of axial pressure gradients (∂ p/∂x) at z/d = 0 for DR = 1 and 4, as depicted in Figure 6.7. This

method of quantifying large-scale interactions in an unsteady separating flow follows the

approach of (Obabko and Cassel, 2002) and (Verma et al., 2023). For the prism with DR = 1,

considerable axial pressure gradients are observed at the leading-edge, indicating a significant

deficit. Downstream of the leading-edge, a recovering trend is observed where the negative peak

in ∂ p/∂x decreases and shifts towards the free-stream flow. Finally, at the trailing edge, a sharp
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(a) DR = 1

(b) DR = 4

Figure 6.7: Axial pressure gradient profiles (∂ p/∂x) at z/d = 0 for (a) DR = 1 and (b) DR = 4.

deficit is noted, attributed to trailing edge flow separation and reverse flow due to upwash effects

(see Chapter 5). In the case of DR = 4, a positive axial pressure gradient in Region A explains the

reverse flow region at 0 ≤ x/d ≤ 1.5, followed by a sharp change in the axial pressure gradient at

x/d = 2.5, where flow reattaches to the body. This change is attributed to flow impingement on

the top surface, creating a favorable pressure gradient and a peak in pressure fluctuation on the

prism surface. In Region B, a negative axial pressure gradient is noted near this location, which is

attributed to interactions of KHI rollers with coherent flow structures (Obabko and Cassel, 2002).

These findings illustrate that interactions between KHI rollers and coherent flow structures result

in a sudden spike in pressure gradients near the flow reattachment region, dividing the primary

recirculation region into co-rotating vortices. Additionally, the formation of a locally adverse

pressure gradient induced by these interactions at x/d = 2.5 in region A are attributed to the flow
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impingement on the prism top surface, where the shear-layer flapping motion forces newly

formed vortices into the prisms surfaces.

6.1.3 Wall Pressure Distribution

Pressure distribution on the prism surfaces is a key indicator of wake characteristics (Rastan et al.,

2021). Mean coefficient of pressure (Cp) and root-mean-square of pressure fluctuations (p′rms) were

computed on the top and side surfaces for cases of depth-ratios 1 and 4 at Re = 2.5× 103. The

results are presented in Figure 6.8. The coefficient of pressure is defined as

Cp = (p− p∞)/(0.5ρU2
b ),

where p and p∞ are the local and free-stream pressures, respectively, and ρ is the fluid density.

Root-mean-square of pressure fluctuations is defined as

p′rms =

√
p′p′,

where p′ is the pressure fluctuation. Furthermore, downstream distance from the leading edge is

normalized by the prism length (l) for consistent comparison. The results reveal a distinct pressure

distribution on the top surfaces with Cp and p′rms exhibiting significant differences between the two

depth-ratios.

Figure 6.8a compares Cp on the prism top and side surfaces at z/d = 0 and y/d = 0.5. After

the leading edge, there is a sudden decrease in Cp due to flow separation. This leads to pressure

recovery downstream for DR = 4 but not for DR = 1. The recovery extends towards maximum Cp

at x/l ≈ 0.53, indicating flow reattachment on the top surface. The overshoot of Cp for DR = 4

suggests favorable pressure distribution after reattachment. However, for DR = 1, pressure

recovery is absent, maintaining low Cp along the top surface, due to direct shedding of the

leading-edge shear layer into the wake. Additionally, increased turbulence causes pressure

overshoot in DR = 4, evident from strong vortical motions in the wake. The side surface exhibits
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Figure 6.8: Distribution of (a) coefficient of pressure (Cp) and (b) root-mean-square of pressure
fluctuations (p′rms) on the prism top (z/d = 0) and side (y/d = 0.5) surfaces with depth-ratio of
DR = 1 and DR = 4 at Re = 2.5×103. Solid line represents top surface and dashed line represents
side surface of the prism. Dotted line shows the mean reattachment point (xR) on DR = 4 prism.

a similar pressure distribution for both depth-ratios, with slight reductions for DR = 4, indicating

dominance of the top surface shear layer in downstream flow dynamics.

The root-mean-square of pressure fluctuations (p′rms) is presented in Figure 6.8b. Maximum

p′rms for DR = 4 occurs at the rear part of the recirculation bubble. Previously, (Farabee and

Casarella, 1984) attributed the maximum p′rms behind a backward-facing step to the separated flow

impingement on the surfaces. Based on the results in Figure 6.8b, the maximum value of p′rms

occurs slightly upstream (x/l ≈ 0.4) of the mean reattachment point. As shown in Figure 6.3,

the maximum value of turbulence kinetic energy (k) occurs at x/l ≈ 0.4, which is associated with

the interactions of KHI with the coherent wake structures in this region. Also KHI rollers are

shed towards the wall before shedding into the wake downstream as shown in Figure 6.5. This

mechanism is called shear-layer flapping (Moore et al., 2019a), which is attributed to an oscillating

reattachment point on the prism surfaces. Based on these observations, the maximum value of p′rms

coincides with the interactions of the KHI rollers with the wake. The result of these interactions is

the impingement of flow on the prism surfaces. Following this impingement, a favorable pressure
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gradient is created (Figure 6.7b) at x/d = 2, which elevates the flow momentum in this region and

enhances the vortex shedding resulting in a more complex wake (shown in Figure 6.1).

The trend of p′rms trends for DR = 1 indicate a more stable flow on the top surface, resulting in

a lower p′rms compared to DR = 4. This can be attributed to the lack of reattachment on the prism

surfaces, resulting from vortices that do not impinge on the walls. The trends of p′rms on the side

surface are consistent with the trends on top, although they are slightly suppressed, indicating that

the top surface shear layer dominates the flow dynamics downstream. The results in Figure 6.8

highlight the importance of depth-ratio in shaping the pressure distribution on prism surfaces.

6.1.4 Origins of fluctuating wall pressure

Pressure fluctuations (p′) in incompressible flow can be expressed in terms of velocity

fluctuations (u′, v′, and w′) through the Poisson equation (Pope, 2001). This equation couples

fluctuating velocity from the numerical simulations with wall pressure fluctuations. By

rearranging the governing equations, the fluctuating pressure is determined as follows:

∇
2 p′ =−ρ

(
2

∂ui

∂x j

∂u′j
∂xi

+
∂ 2

∂xi∂x j
(u′iu

′
j −u′iu

′
j)

)

Here, ∇2 represents the Laplacian operator, ui denotes the mean flow velocity, and u′i indicates the

fluctuating velocity components. The first term signifies the turbulence-mean-shear interaction

(TMI), accounting for the rapid changes in mean flow induced by the fluctuating flow. The second

term represents turbulence-turbulence interaction (TTI), which corresponds to the nonlinear

behavior of turbulent structures. These two terms are considered the primary sources of pressure

fluctuations in the flow (Hemmati et al., 2019).

The root-mean-square of turbulence-mean-shear interaction and turbulence-turbulence

interaction are presented in Figures 6.9 and 6.10, respectively, for DR = 1 and 4 at z/d = 0 and

y/d = 0.5. Figure 6.9 reveals heightened TMI near the leading edge of both prisms, where

separated shear-layers are created. The vorticity associated with these shear-layers alter the mean
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Figure 6.9: Contours of root-mean-square of turbulence-mean-shear interaction (TMI) for (a,c)
DR = 1 and (b,d) DR = 4 at (a,b) z/d = 0 and (c,d) y/d = 0.5. Dotted axis indicates the line of
symmetry. ‘×’ marks the location of maximum TMI.

flow in this region, explaining the extensive TMI at the leading edge. For DR = 4, heightened

TMI is also noted near the trailing edge, showcasing separating shear-layer at trailing-edge that

interact with the downstream wake. In order to quantify the intensity of TMI, maximum TMI

values are compared on the top and side surfaces. The maximum TMI for DR = 4 is ≈ 15% larger

than that of DR = 1 on either surface, suggesting a greater intensity of interactions in the case of a

larger depth-ratio prism. Further, the maximum TMI on the top surface is ≈ 28% and ≈ 30%

larger than on the side surface for DR = 1 and 4, respectively. This indicates that the top surface

shear-layer is the primary source of pressure fluctuations.

Contours of TTI are presented in Figure 6.10. While TMI is concentrated near the leading and

trailing edges, TTI is more distributed throughout the flow field. This is likely due to the velocity

fluctuations produced by the mean flow alterations (TMI) gradually affecting the surrounding

flow field. While TMI points towards the origins of mean flow modulation, TTI highlights the

interactions between turbulent structures (Lowson, 1965; George et al., 1984). As such, the
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Figure 6.10: Contours of root-mean-square of turbulence-turbulence interaction for (a,c) DR = 1
and (b,d) DR = 4 at (a,b) z/d = 0 and (c,d) y/d = 0.5. Dotted axis indicates the line of symmetry.

results in Figure 6.10 scrutinize the interactions between KHI and coherent structures in the wake,

formed due to modulations of mean flow and pressure fluctuations at the leading edge. For

DR = 1, TTI is elevated downstream of the trailing edge on both top and side surfaces, where the

leading-edge shear-layer sheds and interacts with the wake. Similarly, TTI for DR = 4 is elevated

downstream of the leading edge, over the prism top and side surfaces, where KHI rollers interact

with coherent wake structures. Further, flow impingement on the prism surfaces is noted, leading

to a peak in TTI. These results provide evidence for two important observations: (i) flow

modifications are led by the top surface leading-edge shear-layer, and (ii) interactions between

KHI and coherent structures produce a more complex wake in case of DR = 4.

Finally, since the leading-edge shear layer is the primary source of pressure fluctuations, the

cross-spectral density of pressure fluctuations (p′) is computed to identify the co-dominant

frequencies downstream of the leading edge. This sheds light on the influence of KHI rollers on

coherent structures in the wake, downstream of the leading-edge. The cross-spectral density

(Epi p j) of pressure fluctuations is presented in Figure 6.11 for DR = 1 and 4. Cross-spectral
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Figure 6.11: Cross spectral density of pressure fluctuations (p′) for (a) DR = 1 and (b) DR = 4, at
locations marked in the contour of ω∗

z on left.

density measures the correlation between Fourier components of two signals, pi and p j. Epi p j is

used to determine the influence of one signal in relation to the other. Epi p j is computed at

locations marked in the contour of ω∗
z on the left-hand side, in relation to signal p1 recorded near

the leading edge of both prisms. The results reveal that the dominant frequency of pressure

fluctuations is consistent with the frequency of Kelvin-Helmholtz instability rollers (Stkh)

identified in Section 6.1.2. At location 1 of both prisms, the dominant frequency of Stkh indicates

that the flow dynamics are primarily driven by Kelvin-Helmholtz instability. For DR = 1, the

influence of Stkh reduces gradually till location 3, where the influence of Stsh becomes dominant.

Thus for DR = 1, mixing and interactions of KHI with the wake suppresses these rollers and the

wake itself. However, the influence of Stkh remains dominant further downstream of the leading

edge for DR = 4, suggesting the dominance of high-frequency structures in the wake. These
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high-frequency structures enhance the flow momentum over the prism surfaces and lead to a more

complex wake, further highlighting the importance of depth-ratio in shaping the flow dynamics

around prisms.

Our observations and insights are not limited to the specific cases of DR = 1 and 4 at Re =

2.5× 103. The results presented in this study are consistent across the broad parameter space

considered, i.e., varying aspect-ratios (0.25−1.5), depth-ratio (1−4) and Reynolds numbers (1×

103 −2.5×103). Based on previous investigations in Chapter 4 and 5, the wake topology of wall-

mounted prisms is a function of both Reynolds numbers and the prism geometry. For example,

Chapter 4 established that secondary vortex structures, and subsequent wake asymmetry, develop

at sufficiently small depth-ratios with increasing Reynolds numbers. The same is true for the mean

wake evolution behind small aspect-ratio wall-mounted prisms as presented in Chapter 5.

While scope of the present study is to analyze the formation and evolution of Kelvin-Helmholtz

instability rollers and their interactions with coherent wake structures, the results are consistent

across the broader parameter space. Instantaneous flow illustrations in Figure 6.12 depict these

across different AR, DR and Re. Iso-surfaces of Q∗ = 10 overlaid with contours of streamwise

velocity (u) are shown for prisms with DR = 2 and 4 at Re = 1×103, and DR = 1.5 and 3.5 at Re =

1.5×103. The results are consistent with the observations for DR = 1 and 4 at Re = 2.5×103. At

sufficiently small depth-ratios (DR = 1, 1.5, 2), the leading-edge shear layer extends into the wake,

resulting in a more stable flow and suppressed Kelvin-Helmholtz instability (KHI) rollers. This

behavior is consistent across these depth-ratios, with DR = 1.5 and 2 presenting similar features

compared to DR = 1 due to the persistent extension of the shear layer into the wake. Contrarily, the

shear layer collapses towards the wall for larger depth-ratios (DR = 3.5, 4), leading to shear-layer

flapping motions and increased interactions with the wake. These depth-ratios exhibit similar

dynamics with collapse of the shear layer (near the wall) becoming more prominent at higher

depth-ratios (DR = 3.5, 4), causing increased flow unsteadiness. These interactions enhance the

flow momentum over the prism surfaces and lead to a more complex wake structure. Further, the

influence of Reynolds numbers is evident in Figure 6.12 such that the flow is much more stable
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Figure 6.12: Instantaneous flow realizations identified using Q∗ = 10 and overlaid with contours
of streamwise velocity (u) at (a) DR = 2 and (b) 4 at Re = 1×103; and (c) DR = 1.5 and (d) 3.5 at
Re = 1.5×103.

and laminar at Re = 1×103 while it becomes irregular at Re = 1.5×103. In our analysis, results

underscore the importance of depth-ratio in shaping the flow dynamics around prisms, with larger

depth-ratios leading to a more complex wake structure.

6.2 Summary

This chapter focuses on examining the formation and evolution of Kelvin-Helmholtz Instability

and their interactions with the coherent wake structures, i.e., hairpin-like vortices. Additionally,

this study underscores the impact of depth-ratio on surface pressure distribution and the origins of
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pressure fluctuations in the wake of wall-mounted prisms. While results were presented for the

case of AR = 1, DR = 1 and 4 at Re = 2.5×103, they were consistent across the broader parameter

space. The results revealed the formation of distinct KHI rollers originating from the leading edge

shear layer, characterized by their high-frequency signatures. Increasing depth-ratio enhances the

vortex shedding, especially the high-frequency KHI rollers in the wake. This aligned with stronger

spanwise vortical motions at larger depth-ratios.

Shear-layer flapping motion is observed for the larger depth-ratio prisms, leading to an

oscillating reattachment point on the prism surfaces. Shear-layer flapping motion avails the flow

impingement on the prism surfaces by driving vortices formed post leading-edge separation onto

the prism surfaces. Such shear-layer flapping remains absent for the shorter prisms. Moreover,

shear-layer flapping motion avails a complex interaction between KHI rollers and hairpin-like

vortices in the wake. This leads to a more complex wake structures at larger depth-ratios.

Specifically, shear-layer flapping and flow impingement on the prism surfaces elevate the flow

momentum, which in turn enhances vortex shedding and leads to a more complex wake.

Interactions between KHI rollers and coherent wake structures are quantified using the

turbulence-mean-shear interaction and turbulence-turbulence interaction terms of the Poisson’s

equation. The results indicate that the top surface shear layer is the primary source of pressure

fluctuations, with the interactions between KHI and coherent wake structures contributing to

pressure fluctuations. Enhanced pressure fluctuations further motivates velocity fluctuations,

resulting in the elevated momentum and complex wake topology. Finally, cross-spectral density

of pressure fluctuations highlight the influence of KHI rollers in the wake downstream of the

leading edge. Dominant frequency of pressure fluctuations is consistent with the frequency of

KHI rollers, indicating that flow dynamics are primarily driven by Kelvin-Helmholtz instability.

These findings underscore the importance of depth-ratio in shaping the flow dynamics around the

prism, with the depth-ratio of 4 leading to a more complex wake structure.
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Chapter 7

INFLUENCE OF DEPTH-RATIO ON

TURBULENCE TRANSITION
‡

Increasing depth-ratio enhances downwash flow, which suppresses wake unsteadiness, as

described in Section 2.2. Conversely, increasing aspect-ratio amplifies upwash flow, contributing

to wake irregularity (Saha, 2013). This indicates that wake unsteadiness in wall-mounted prisms

can be intensified by either increasing their aspect-ratio and/or reducing their depth-ratio. The

resulting heightened wake irregularity suggests a connection between abrupt geometric changes

and the transition to turbulence, which forms the focus of this chapter on investigating how wake

irregularity evolves with the flow transitions into a higher Reynolds number regime. Specifically,

this chapter evaluates the potential for enhanced momentum transport with increasing depth-ratio

as a precursor to wake transition. The hypothesis centers on the idea that an unsteady shear layer

may intensify interactions between leading-edge shear-layer instabilities and prism surfaces.

These enhanced interactions could elevate flow momentum and play a critical role in the

transition process. The study examines prisms with AR = 0.25 − 1.5 and DR = 1 − 4 at

Re = 1 × 103 − 5 × 103, employing Large Eddy Simulations (LES) with the Dynamic

‡The content of this chapter has been accepted for publication in Journal of Fluid Mechanics under the citation:
“Goswami, S., & Hemmati, A. (2024). Influence of depth-ratio on turbulence transition in the wake of wall-mounted
prisms. Journal of Fluid Mechanics”.
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Figure 7.1: (a,b) Mean streamwise velocity (u) and (c,d) turbulent kinetic energy (k) contours
overlaid with mean velocity streamlines at z/d = 0 for (a, c) DR = 1 and (b, d) DR = 4 prisms.

Smagorinsky sub-grid scale model, as detailed in Chapter 3. The key findings are presented in

Section 7.1 and summarized in Section 7.2.

7.1 Results and Discussion

Main features of the mean flow are first reported. As shown in Figures 7.1a and 7.1b, streamlines

highlight the presence of flow separation at the leading edge, which in case of DR = 1 prolongs

into the wake and reattaches at x/d ≈ 2.12 for DR = 4. Reattachment length is quantified by

tracing the time-averaged wall shear stress across the top surface of DR = 4 prism. A large scale

recirculation region is present on the top surface of DR = 4, hereby referred to as the primary

recirculation (PR) region. A second recirculation bubble is present below the PR region, noted as

the secondary recirculation (SR) zone. Indeed, the reverse flow induced in the near-wall region

of the PR forms a boundary-layer moving upstream, resulting in the formation of SR. Following

the trailing-edge separation of the flow, a tertiary recirculation region is formed, referred to as the
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wake recirculation (WR) region. For a short prism, the absence of PR and SR is attributed to a

lack of flow reattachment on the prism surfaces. As such, only WR is noted due to shedding of the

leading-edge shear-layer directly into the wake. Contours of turbulence kinetic energy (k = 1
2u′iu

′
i)

are presented in Figures 7.1c and 7.1d. Initially, both prisms highlight an almost laminar state of

the leading-edge shear-layer. Instabilities associated with the leading-edge shear-layer amplify the

intensity of fluctuating velocities, initiating the transition-to-turbulence (Wang and Zhou, 2009).

These regions of intense fluctuations result in high turbulence intensity (u′i) and thus maximizing

k. For the larger prisms, maximum k occurs on the prism top surface, while the shorter prisms

experience it in the wake. The region of maximum k occurs in the primary vortex shedding region.

Qualitative illustrations of instantaneous vortex structures for DR = 1 and 4 are presented in

Figure 7.2. Following the leading-edge separation, shear-layer undergoes distinct stages of

growth and primary instability formation (Moore et al., 2019a). This triggers the formation of

Kelvin-Helmholtz instability (KHI) of the shear-layer for both prisms, as evident by the finite

spanwise vortex rollers forming near the leading edge. Such rollers are delayed and less frequent

for DR = 1, and their formation occur over a larger distance compared to DR = 4. This is evident

from the distribution of maximum turbulent kinetic energy (kmax) along the mid-span (z/d = 0) of

both prisms at Re = 2.5× 103 in Figure 7.3. Previous studies (Moore et al., 2019b) have used

similar methods to identify the location of vortex roll-up behind sharp-edged bluff bodies.

Figure 7.3 shows that the roll-up phenomenon, that is the location of maximum turbulent kinetic

energy, is delayed for DR = 1 compared to DR = 4. In case of DR = 4, the roll-up occurs close to

x/d ≈ 2, while it occurs at x/d ≈ 3 for DR = 1. These rollers become more prominent with

increasing depth-ratio. Thus there is evidence of a strong dependence on depth-ratio for the

generation of these instabilities. Evidence of the flow periodicity and frequency signatures is

provided in Section 7.1.2. Figures 7.2c and 7.2d presents the lateral view of the instantaneous

vortex structures for DR = 1 and 4 prisms. In case of DR = 1, amplified quasi-periodic

perturbations resulting from an unsteady shear-layer are less frequent and delayed, whereas they

are more pronounced for DR = 4, and they occur more frequently, especially in the wake region
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Figure 7.2: Instantaneous vortex structures overlaid with axial velocity (u) contours for (a) DR= 1
and (b) DR = 4 prisms identified using Q−criterion (Q∗ = 1). Lateral view of the instantaneous
vortex structures for (c) DR = 1 and (d) DR = 4 prisms.

(1 ≤ x/d ≤ 6). As such, it becomes apparent that large-scale vortex shedding is more pronounced

for DR = 4 compared to DR = 1. Following the leading-edge shear-layer separation and

instability development, flapping-like motion (Cimarelli et al., 2018) leads to perturbations in the

shear-layer which amplify and propagate downstream, ultimately interacting with and influencing

large-scale vortex shedding. Further evidence of shear-layer flapping is presented in Section 7.1.1

and discussion on interactions is presented in Section 7.1.3.
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Figure 7.3: Distribution of maximum turbulent kinetic energy (kmax) along the mid-span (z/d = 0)
of both prisms at Re = 2.5×103.

Figure 7.4 present contours of span-wise vorticity (ω∗
z ) for both prisms, superimposed with

instantaneous streamlines and the isopleth of u = 0 at z/d = 0. Formation of KHI rollers from

the leading-edge shear-layer is evident for both depth-ratios. As presented in the zoomed-in sub-

figure, an early initiation of KHI rollers is noted near the leading-edge for DR = 4 compared to

DR= 1, where the instability appears in the wake at x/d ≥ 1. The onset of KHI rollers is quantified

by streamwise position of the first appearance of spanwise vortices, which is at x/d ≈ 0.4 and 1

for DR = 4 and 1, respectively. This indicates that depth-ratio significantly influences the onset of

KHI rollers in the wake of wall-mounted prism. Furthermore, the leading edge shear-layer sheds

directly into the wake for the case of DR = 1, while the flow reattaches on surfaces of the larger

prism. The larger prism shows a prominent span-wise vortex shedding with hairpin-like vortices

appearing over the prism surfaces. However vortex shedding is suppressed by interactions between

the separating shear-layer and the wake in WR for shorter prism. These observations along with

the formation of KHI rollers and their interaction with surfaces of the prism are a precursor to the

transition-to-turbulence in the wake of wall-mounted prisms.

Previous studies have noted that the wake dynamics are significantly influenced by the

depth-ratio and aspect-ratio of the prism, as well as the flow Reynolds number (Wang et al., 2006;

Rastan et al., 2021; Zargar et al., 2022b). Rastan et al. (2021) showed that increasing depth-ratio
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Figure 7.4: Contours of span-wise vorticity, ω∗
z , for (a) DR = 1 and (b) DR = 4, superimposed

with instantaneous streamlines and the isopleth of u = 0 (bold, green line) at z/d = 0.

for a large AR prism resulted in decreased vortex shedding due to diminished interactions between

the separating shear-layer and the wake. This effect correlates with strengthening of the

downwash flow. These results are consistent with the wake observed behind low aspect-ratio

prisms with changing depth-ratio, where increasing depth-ratio resulted in suppressed wake

unsteadiness for Re ≤ 5 × 102 (Chapter 4). Further, Zargar et al. (2022b) demonstrated that

increasing the Reynolds number beyond 7.5 × 102 for a long prism (DR = 5) resulted in an

irregular unsteady wake, resembling a transitional state. In summary, previous studies have

indicated that increasing the depth-ratio (DR) suppresses wake irregularity (Chapter 4) while for a

long prism the wake evolves into an irregular unsteady wake with increasing Reynolds

number (Zargar et al., 2022b). This observation underscores the complexity of the flow dynamics

around wall-mounted prisms and suggests that multiple factors influence the interaction between

the shear layer and wake structures which results in wake transitions, such as the flow Reynolds

number and prism geometry parameters. The present study portrays a novel perspective where the

flow irregularity is enhanced with depth-ratio. Current study focuses on the role of Reynolds

number in the transition phenomenon, while investigating the influence of depth-ratio on the wake
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Figure 7.5: Axial wall-pressure gradient (∂ pw/∂x) along the mid-span (z/d = 0) of both prisms
at Re = 2.5×103.

dynamics. At moderate Reynolds numbers, the unsteadiness of the shear-layer (Moore et al.,

2019a) is stronger, which interact with the prism surfaces and elevate the flow momentum in this

region due to large depth-ratio. This further enhances the interactions between KHI and the wake

coherent structures, leading to the wake transition. Evidence of this mechanism is discussed

further in this article by first presenting the unsteady shear-layer motion, followed by the wake

frequency signatures, and enhanced interactions using the Poisson equation. Finally, the triadic

interactions are quantified using bi-spectral mode decomposition (BMD) to further understand the

transition phenomenon. Here, the interactions between KHI and the large-scale vortex shedding

are analyzed.

7.1.1 Unsteady Shear-Layer Motion

Axial wall-pressure gradient along the mid-span (z/d = 0), of both prisms at Re = 2.5× 103, are

investigated in Figure 7.5. The rapid increase in pressure gradient near the leading-edge is

attributed to streamwise flow compression due to an abrupt flow separation at the leading

edge (Obabko and Cassel, 2002). This yields a favorable pressure gradient, indicated by an

overshoot of ∂ pw/∂x towards a positive value. Then, the pressure gradient recovers for DR = 1

due to the absence of flow reattachment and shedding of the shear-layer into the wake. For

DR = 4, pressure gradient remains elevated due to the reattachment of the shear-layer on the
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prism surfaces. The elevated pressure-gradients feature oscillatory motion, which results in flow

compression and expansion (Obabko and Cassel, 2002). This leads to an unsteady shear-layer

characterized by flapping-like motion. Similar oscillatory shear-layer motions are observed in

infinite-span prisms (Kiya and Sasaki, 1983; Cimarelli et al., 2018) as well as in 2D

forward-backward-facing steps (Fang and Tachie, 2019). The unstable shear-layer motion is

associated with the formation of large-scale structures in the wake and their interactions, which

are responsible for the momentum transport and mixing processes (More et al., 2015; Moore

et al., 2019a).

Unsteady motion of the shear-layer is quantitatively analyzed using the wall shear-stress (τw =

µ ∂u/∂y) along the top surface of the long prism, as depicted in Figure 7.6. Temporal variations

between the mean reattachment point are recognized by the border between the reverse flow (τw <

0) and forward flow (τw > 0) regions. Previous studies (Lander et al., 2018) suggest two main

mechanisms that control the flow unsteadiness around sharp edged prisms: vorticity-roll-up and

shear-layer flapping. For long prisms, the shear-layer roll-up near the leading-edge intermittently

forces the newly formed vortices towards the prism surfaces, resulting in a flapping motion (Moore

et al., 2019a). This induces oscillations of the primary recirculation bubble (PR) between x/d ≈ 1.2

and ≈ 2.1. As presented in Figure 7.6, mean reattachment point at z/d = 0 for the large depth-ratio

prism follows an oscillatory pattern. Further, SR also appears to oscillate, albeit in the opposite

direction. With time, SR moves further upstream, while PR moves downstream. This behavior

may be linked to the mechanism of shear-layer flapping, though it remains out of scope for this

study, which only focuses on the transition phenomenon.

7.1.2 Flow Periodicity

The flow periodicity is investigated by using the pre-multiplied power spectral density of the

streamwise (Eu), normal (Ev) and spanwise (Ew) velocity fluctuations near the leading-edge at

(0.5,1.3,0) in Figure 7.7. Multiple peaks are noted in the power spectrum of both cases, with the

one at Stkh appearing to be dominant. This frequency is associated with KHI of the leading-edge
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Figure 7.6: Space-time plot of the instantaneous wall shear-stress (τw) along the top surface of the
prism with DR = 4 at z/d = 0. τw > 0 (White) represents the region of forward flow, while τw < 0
(Gray) represents the region of reverse flow.

shear-layer. Moreover a harmonic of KHI is observed at 2Stkh. Another frequency centered at Stsh

is also observed, mainly attributed to the Kármán-like vortex shedding. At DR = 1, Stsh and Stkh

are 0.170 and 0.855, respectively, while Stsh = 0.173 and Stkh = 1.290 at DR = 4. With increasing

depth-ratio from 1 to 4, a meager increase in Stsh is noted, while Stkh and 2Stkh are significantly

enhanced. In other words, the depth-ratio enhances KHI of the leading-edge shear-layer, and

further explains the strong span-wise vortex shedding (observed in Figure 7.2b). Additionally, as

noted in Figure 7.2a, the formation of KHI rollers for DR = 1 occurs over a larger distance

compared to DR = 4. This delay in onset of KHI rollers is reflected in Figure 7.7, where Stkh for

DR = 1 is lower compared to DR = 4. This further suggests that structures associated with Stkh

for DR = 1 are larger and slow-growing compared to DR = 4. Finally, a sub-harmonic spanwise

frequency is noted, which is attributed to alternate shedding of the secondary vortex structures in

the wake (Chapter 4).

Motion of the unsteady shear-layer is correlated with the vortex-pairing mechanism in

sharp-edged prisms (Ma et al., 2023). Following the flow separation at the leading-edge, both the

shear-layer rolls-up and newly formed vortices are intermittently forced towards the prism

surfaces and convect downstream (flapping mechanism). These vortices pair with other ones in

the wake, growing into large-scale structures, such as hairpin-like vortices (vortex-pairing

mechanism). Large scale vortex shedding away from the leading edge is associated with large

scale momentum transport. The vortex-pairing and interactions of KHI with large-scale vortices
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Figure 7.7: Pre-multiplied power spectral density of streamwise (Eu), normal (Ev) and spanwise
(Ew) velocity fluctuations near the leading-edge at (0.5,1.3,0) for (a) DR = 1 and (b) DR = 4.

are quantified using the correlation: Stkh/Stsh = 0.18Re0.6 (Lander et al., 2018). Since these

interactions are a function of Reynolds number, empirically this ratio should be Stkh/Stsh = 18 for

Re = 2.5×103 (Lander et al., 2018). For example, this ratio is Stkh/Stsh = 26.5 for flow around a

2D square prism at Re = 2× 103 (Brun et al., 2008). In our cases, results in Figure 7.7 indicate

that this ratio is ∼ 5.0 and ∼ 7.5 for DR = 1 and 4, respectively. This suggests that interactions

between KHI and large-scale structures depend on depth-ratio, and they are suppressed compared

to infinite span and 2D prisms (Brun et al., 2008; Kumahor and Tachie, 2022), potentially due to

the three-dimensional effects in the wake.

7.1.3 Leading-edge Shear-layer Interactions

Interactions between KHI and large-scale vortex shedding can be further quantified by analyzing

the Poisson equation:

∇
2 p =−ρ

(
2

∂ui

∂x j

∂u′j
∂xi

+
∂ 2

∂xi∂x j
(u′iu

′
j −u′iu

′
j)

)
.
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Figure 7.8: Profiles of maximum values of root-mean-squared (a) turbulence-mean-shear
interaction (T MImax) and (b) turbulence-turbulence interaction (T T Imax) terms of the Poisson’s
equation for DR = 1 and 4 prisms at z/d = 0 (Blue) and y/d = 0.5 (red). The axial distances are
normalized using prism length (l). ⃝ represents DR = 1; □ represents DR = 4.

Here, the right-hand side can be decomposed into two terms: turbulence-mean-shear interaction

(TMI) and turbulence-turbulence interaction (TTI). TMI accounts for the rapid changes in mean

flow due to fluctuating fields, while TTI is associated with non-linear interactions of turbulent

structures. These two terms are considered the primary sources of pressure fluctuations in the

flow (Ma et al., 2023). Figure 7.8 presents the profiles of maximum values of TMI and TTI terms

of the Poisson equation for DR = 1 and 4 at z/d = 0 (Blue) and y/d = 0.5 (red). Figure 7.8a

reveals heightened TMI closer to the leading edge, where separated shear-layers are created for

both prisms. Following the abrupt shear-layer separation at the leading-edge, vorticity associated

with the shear-layer alter the mean flow in this region, resulting in enhanced momentum. This

explains the high values of TMI near the leading-edge. Initially, TMImax for both prisms remains

large, though it subsides quickly for DR= 1. Due to a lack of flow reattachment in DR= 1, TMImax

for top shear-layer reduces till x/l ≈ 0.5, followed by a gradual increase due flow interactions with

the upwash flow at the trailing edge (Chapter 5). TMI for DR = 4 remains large in 0.1 ≤ x/l ≤ 0.3,

indicating a region of elevated mean-flow modulations by KHI. For both cases, TMImax on side

surfaces is significantly suppressed compared to the top, indicating that the top surface shear-layer

plays a dominant role in driving the downstream flow. Finally, TMI points to the origins of mean
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flow modulations, which are associated with the shear-layer flapping-like motion. Thus, enhanced

TMI near the leading-edge for DR = 4 identify the location that shear-layer flapping-like motion

is most pronounced.

The TTI term, presented in Figure 7.8b, highlights the interactions between different flow

structures (Ma et al., 2023). While TMI is concentrated near the leading-edge, TTI is more

distributed across the top and side surfaces of both prisms. The distribution is likely due to the

enhanced flow momentum (velocity fluctuations) produced by the mean flow alterations that

gradually affect the surrounding flow field. For DR = 1, TTImax is elevated closer to the

trailing-edge, which is attributed to direct shedding of the leading-edge shear-layer into the wake.

This enhances the interactions and vortex mixing in the wake region (WR) (Chapter 5). For

DR = 4, elevated TTImax occurs close to location of the flow reattachment on the prism surfaces

(xR/l ≈ 0.53). This region is associated with the breakdown of KHI rollers into hairpin-like

vortices, which are then convected downstream. The interactions between KHI rollers and

large-scale vortex shedding are most pronounced in this region, leading to an increased turbulence

intensity and mixing (previously shown in Figure 7.1d). These processes enhance the flow

momentum due to an influx of energy by the mean flow modulation (TMI). As such, increased

momentum results in the enhancement of vortex shedding and wake transition. These interactions

are driven by the flow geometry, since such a mechanism is absent for the short prism, where

TTImax steadily rises up to the trailing-edge. Finally, TTImax are comparable for the top and side

surface shear-layers for both prisms, which indicates an invariance of energy production and

dissipation on top and side surfaces.

Triadic interactions form the basis of the energy transfer mechanism in the wake transition

phenomenon (Craik, 1971). Frequency triad, described by the interactions between two flow

structures at frequencies Sti and St j, results in a third frequency of Sti+ j such that

Sti ± St j ± Sti+ j = 0. These interactions are quantified using bi-spectral mode decomposition

(BMD) analysis, proposed by Schmidt (2020). Figure 7.9 shows the magnitude of mode

bi-spectrum for DR = 4 in the sum and difference regions. Their interactions with large-scale
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Figure 7.9: Magnitude mode bi-spectrum for DR = 4, using N f f t = 210, in the sum and difference
regions.
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Figure 7.10: BMD interaction map for DR = 4 prism, showing the interactions between (a)
Kelvin-Helmholtz instability and mean flow and (b) Kelvin-Helmholtz instability and large-scale
vortex shedding.

vortex shedding frequency (Stsh) are noted in Figure 7.9 along with the sum interaction of Stkh

with Stsh, and the fundamental mode of Stsh. The intensity of the spectrum is large of the

large-scale frequencies (Stsh), while it reduces significantly for Stkh. Further, the sum interaction

of Stsh corresponds to the global maximum of mode bi-spectrum, consistent with the separated

flow in Schmidt (2020).

Interactions of KHI with the mean flow and large-scale vortex shedding are presented through a

BMD interaction map in Figure 7.10. This map quantifies the average local bi-correlation between
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three frequencies, Sti,St j and Sti+ j, involved in the triad. The interactions are defined as

Ψk,l = |φk+l ◦φk◦l|,

where φk+l represents the resultant mode of triadic interaction and φk◦l represents the influence of

input modes. For more information regarding the formulation, the readers are referred to Schmidt

(2020). For both cases, the interactions are most pronounced near the leading-edge and through-out

the upper surface of the prism up to x/d ≈ 2, where the flow reattaches to the surface. Interactions

of KHI with the mean flow is dominant outside the PR, with the maximum value occurring at

x/d ≈ 0.8. This is consistent with the location of maximum TMI in Figure 7.8a. This interaction

is associated with the mean-flow modulation by KHI due to shear-layer flapping-like motion. A

slightly elevated interaction at the trailing edge also corresponds to the trailing-edge shear-layer

interacting with the flow downstream. Interactions of KHI with large-scale vortex shedding are

distributed across the prism surface. Near the center of PR, these interactions enhance due to the

flow impingement on prism surfaces as a result of unsteady shear-layer. This region of elevated

interactions is consistent with the region of maximum TTI in Figure 7.8b. These results confirm

that flow modulations at the leading-edge, due to KHI, are convected downstream and interact with

large-scale vortex shedding, enhancing the flow momentum. Due to the interactions and vortex

breakdown, the flow momentum reduces further till the trailing-edge. While not showed here for

DR = 1, such interactions remain absent, underscoring the influence of depth-ratio in the wake

transition phenomenon. These results provide a novel understanding of the interactions between

KHI and large-scale vortex shedding in the wake of wall-mounted prisms.

7.1.4 Observations across the parameter space

Observations and insights from the specific cases of DR= 1 and 4 at Re= 2.5×103 are expandable

across the broad parameter space considered in this study, i.e varying aspect-ratio (0.25− 1.5),

depth-ratio (1− 4), and Reynolds numbers (1× 103 − 5× 103). For example, consider the cases
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Figure 7.11: Instantaneous vortex structures overlaid with axial velocity (u) contours for (a, c)
DR = 1.5 and (b, d) 3.5 at (a, b) Re = 1.5×103, (c, d) Re = 4×103 identified using Q−criterion
(Q∗ = 1).

of DR = 1.5 and 3.5 at Re = 1.5× 103 and 4× 103 in Figure 7.11. These instantaneous vortex

structures reveal that for a short depth-ratio prism (DR= 1.5), the leading-edge shear-layer extends

and sheds directly into the wake. The influence of Reynolds number becomes apparent, where the

unsteady wake is classified into regular unsteady wake, consistent with the observations of Zargar

et al. (2022b). In contrast, larger depth-ratio prism (DR= 3.5) exhibits the shear-layer reattachment

to the prism surfaces, leading to an unsteady shear-layer motion and enhanced interactions with

large-scale vortex shedding. This results in the formation of large-scale vortex rollers and hairpin-

like vortices in the wake, consistent with previous observations from the case of DR = 4 at Re =

2.5×103.
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Figure 7.12: Instantaneous vortex structures overlaid with axial velocity (u) contours for prisms
with AR= 1.5 and (a) DR= 1.5 and (b) 3.5 at Re= 2.5×103 identified using Q−criterion (Q∗= 1).
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Figure 7.13: Axial wall-pressure gradient along the mid-span (z/d = 0) of prisms with (a) AR =
1.5 at Re = 2.5×103, and (b) AR = 1 at Re = 4×103.

Next, consider the cases of prisms with AR = 1.5 and DR = 1.5 and 3.5 at Re = 2.5× 103 in

Figure 7.12. The results are consistent with the observations from AR = 1, where the interactions

of KHI with large-scale vortex shedding is more pronounced for larger depth-ratio. This results in

a more complex wake topology downstream of the leading-edge, as opposed to DR = 1.5, where

shedding of the shear-layer into the wake suppresses the interactions resulting in a more stable

flow. Influence of prism aspect-ratio is further evident in Figure 7.12, where the flow unsteadiness

enhances with aspect-ratio, consistent with observations of Saha (2013). Finally, the unsteady



Chapter 7. Influence of depth-ratio on turbulence transition 172

shear-layer is quantitatively observed by axial wall-pressure gradients plotted along the prism

mid-span (z/d = 0) in Figure 7.13. Here, the cases of DR = 1.5 and 3.5 at AR = 1.5 at

Re = 2.5× 103 and AR = 1 at Re = 4× 103 are presented. Rapid overshoot of pressure gradient

near the leading-edge, suggesting an abrupt flow separation, is consistent in all cases. The trends

of ∂ pw/∂x for DR = 1.5 remain steady at Re = 2.5× 103, while small oscillations are noted at

Re = 4× 103. Although Reynolds number effects are not the primary focus of this study, the

oscillations in ∂ pw/∂x at higher Reynolds numbers can be linked to unsteady wake dynamics.

Notably, for larger depth-ratio prism (DR = 3.5), the oscillatory behavior of the pressure gradient

becomes evident and more pronounced across both aspect-ratios and Reynolds numbers.

Oscillations enhance with depth-ratio and they are associated with shear-layer flapping-like

phenomenon, which is pronounced for these cases (see Figure 7.11, 7.12). Previous Chapters, 4

and 5, have established that unsteady and mean wake topology of wall-mounted prisms are

functions of both Reynolds number and body geometry. Our results expand this argument to

turbulence transition, where the interactions between KHI and large-scale vortex shedding are

enhanced with increasing depth-ratio. These interactions are driven by the unsteady shear-layer

motion, which is most pronounced for large depth-ratio prisms. These interactions enhance the

flow momentum over the prism surfaces, resulting in a more complex wake structure and

ultimately leading to turbulence transition.

7.2 Summary

This chapter focused on the wake transition phenomenon at Reynolds number of 2.5× 103 for

prisms with aspect-ratio of 1 and depth-ratios of 1 and 4. Results were consistent for the entire

parameter space studied in this dissertation (AR = 0.25 − 1.5, DR = 1 − 4, and

Re = 1 × 103 − 5 × 103). The wake unsteadiness is enhanced with increasing depth-ratio.

Kelvin-Helmholtz instability is noted for all cases, forming finite spanwise vortex rollers.

However, the intensity and frequency of the rollers are more pronounced for longer prisms
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(DR ≥ 3), while for short prisms they are delayed and less frequent. Additionally, the formation

of KHI for short prisms takes place over a larger distance compared to longer prisms. Enhanced

wake unsteadiness is attributed to interactions between Kelvin-Helmholtz instability and

large-scale vortex shedding, induced by an unsteady shear-layer flapping-like motion in the wake

of large depth-ratio prisms. Evidence of unsteady shear-layer is provided by analyzing the

space-time wall shear-stress contours, showing an oscillating recirculating region. Interactions

between Kelvin-Helmholtz instability and large-scale vortex shedding are quantified using the

Poisson equation and bi-spectral decomposition. Turbulence-mean-shear interaction term of

Poisson’s equation is elevated near the leading-edge, while turbulence-turbulence interaction term

is distributed across the prism surfaces. Elevated TMI near the leading-edge points to the mean

flow manipulations due to unsteady shear-layer, while enhanced TTI on the prism surfaces

indicates interactions between Kelvin-Helmholtz instability and large-scale vortex shedding.

Elevated TMI shows that the leading-edge flow manipulations provide energy, which is then

transferred to the large-scale vortex shedding, enhancing the flow momentum. Increased

momentum in the wake enhances vortex shedding, which is a precursor to turbulence transition.

Finally, bi-spectral mode decomposition analysis provides evidence of the interactions between

Kelvin-Helmholtz instability and large-scale vortex shedding, further confirming the transition

process. This study underscores the role of depth-ratio in the transition-to-turbulence

phenomenon at moderate Reynolds numbers, as defined in Section 1.1 and provides novel

insights into the interaction mechanisms of Kelvin-Helmholtz instability and large-scale vortex

shedding in the wake of wall-mounted prisms.
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Chapter 8

DESTABILIZATION OF

LEADING-EDGE SHEAR-LAYER
‡

The impact of depth ratio on flow irregularity and vortex shedding characteristics of wall-mounted

prisms was partially addressed in Chapter 7. This chapter focuses on mechanisms that drive the

destabilization of the leading-edge shear layer, emphasizing flow topology and the onset of KHI.

These instabilities enhance flow irregularity and modulate spanwise vortex structures. As discussed

in Section 2.2, leading-edge shear-layer separation and reattachment are defining features of the

flow around wall-mounted long prisms. This flow combines small-scale turbulent motions near

the leading edge with large-scale vortex shedding, resulting in nonlinear interactions that amplify

wake irregularity (discussed in Chapter 7) and significantly influence surface pressure distribution

(confirmed in Chapter 6). The precise dynamics of these interacting processes and their influence

on flow topology are explained in this chapter. This chapter expands on previous sections by

investigating the destabilization mechanisms of the leading-edge shear layer in the wake of wall-

mounted long prisms. The primary focus is on the onset of Kelvin-Helmholtz instability, which

‡The contents of this chapter are under review by Journal of Fluid Mechanics under the citation: “Goswami, S.,
& Hemmati, A. (2025). Destabilization of leading-edge shear-layer in the wake of wall-mounted long prisms. Journal
of Fluid Mechanics”.
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Figure 8.1: Instantaneous vortex structures overlaid with axial velocity (u) contours for (a, c)
DR = 1 and (b, d) DR = 4 prisms with (a, b) AR = 1 and (c, d) AR = 1.5 at Reynolds number of
2.5×103, identified using Q−criterion (Q∗ = 1).

intensifies flow irregularity and modulates spanwise vortex structures. Here, prisms with AR =

0.25−1.5 and DR = 1−4 are specifically examined at Re = 2.5×103, 5×103, and 1×104.

8.1 Results and Discussion

First, the main features of the instantaneous wake around wall-mounted prisms are analyzed.

Figure 8.1 displays the instantaneous three-dimensional vortex structures for prisms with DR = 1

and 4 and AR = 1 and 1.5, at a Re = 2.5 × 103. Sharp leading edge of the prism fixes the

boundary layer detachment point, leading to the formation of a leading-edge shear layer. This

shear layer undergoes distinct stages of growth and onset of primary instabilities (Moore et al.,
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2019a). A Kelvin-Helmholtz instability first develops, resulting in the formation of finite

spanwise vortex rollers near the leading edge, as shown in Figure 8.1. A secondary instability

associated with KHI then destabilizes these spanwise rollers, resulting in the formation of

hairpin-like vortices downstream. For both aspect-ratios, the long prism (DR = 4) exhibits

prominent spanwise vortex shedding and formation of hairpin-like vortices over the prism

surfaces. Contrarily, leading-edge shear layer sheds directly into the wake for the short prism

(DR = 1), triggering secondary instabilities described in Chapter 4, which suppress vortex

shedding. This suppression is evident in Figure 8.1, where the long prism (DR = 4) shows more

prominent spanwise vortex shedding compared to the short prism (DR = 1). In this chapter, the

term “long prism” refers to DR = 4 and “short prism” refers to DR = 1.

Figure 8.2 illustrates instantaneous vortex structures for prisms with DR = 1 and 4 at Re =

5× 103 and 1× 104. Results indicate that vortex shedding becomes more pronounced at higher

Reynolds numbers, with the long prism displaying notably stronger spanwise vortex shedding

compared to the short prism. Additionally, vortex shedding is more irregular at higher Reynolds

numbers than Re = 2.5×103 (see Figure 8.1). These observations in Figure 8.2 confirm the impact

of prism depth-ratio on flow irregularity and vortex shedding characteristics at elevated Reynolds

numbers. Onset of Kelvin-Helmholtz instability is observed near the leading edges of both prisms,

resulting in the formation of spanwise KHI rollers. At higher Reynolds numbers, these KHI rollers

form closer to the leading edge. However, downstream formation of hairpin-like vortices and the

overall spanwise vortex shedding pattern remain consistent with those at Re = 2.5×103.

While previous studies have scrutinized the vortex shedding mechanism for infinite-span

rectangular prisms (Cimarelli et al., 2018; Zhang et al., 2023), there are no studies that focus on

quantitative investigation of the onset of KHI instabilities and subsequent enhancement of the

wake irregularity for finite-span prisms. Moreover, previous studies have discussed the evolution

of leading-edge vortex rollers for infinite-span rectangular prisms. However, there has been

limited attention given to destabilization of the leading-edge shear-layer. Since the wake of finite

wall-mounted prisms is impacted by various end-effects (Wang and Zhou, 2009), the source of



Chapter 8. Destabilization of leading-edge shear-layer 177

Fl
ow

Kelvin-Helmholtz

Hairpin-like

vortex

(a)

Fl
ow

Kelvin-Helmholtz

Hairpin-like

vortex

(b)

Fl
ow

Kelvin-Helmholtz

Hairpin-like

vortex

(c)

Fl
ow

Kelvin-Helmholtz

Hairpin-like

vortex

(d)

Figure 8.2: Instantaneous vortex structures overlaid with axial velocity (u) contours for (a, c)
DR = 1 and (b, d) DR = 4 prisms at (a, b) Re = 5× 103 and (c, d) Re = 1× 104, identified using
Q−criterion (Q∗ = 1).

unsteadiness in the leading-edge shear-layer remains unclear. Moreover, Zargar et al. (2022b)

examined the transitional mechanism and early wake developments behind long prisms (DR ≥ 3),

suggesting that hairpin-like vortices form after the initial shear-layer roll-up. Preliminary results

in this dissertation, however, show that a destabilization mechanism deforms the spanwise roller

following the initial shear-layer roll-up, which subsequently form hairpin-like structures. Thus,

this work aims to address this knowledge gap by investigating the mechanism of destabilization in

the leading-edge shear-layer at increasing depth-ratio.
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Figure 8.3: (a,b) Mean streamwise velocity (u) contours overlaid with mean velocity streamlines;
and (c,d) contours of root-mean-squared streamwise fluctuations (u′rms) overlaid with streamline of
u = 0. Contours presented for (a,c) DR = 1 and (b,d) DR = 4 prisms at Re = 2.5×103 at spanwise
plane of z/d = 0.

8.1.1 Mean flow characteristics

Main features of the mean flow topology are discussed in this section to provide a comprehensive

understanding of the flow characteristics around wall-mounted prisms. Figures 8.3a and 8.3b

present mean streamwise velocity (u) contours overlaid with mean velocity streamlines for both

prisms, highlighting flow separation at the leading edge. For the short prism, the leading-edge

shear layer extends into the wake, forming a wake recirculation (WR) region. For DR = 4, the

shear layer reattaches to the top surface of the prism at x/d ≈ 2.12, creating a primary

recirculation (PR) region on the top surface. Additionally, a secondary recirculation (SR) region

forms below the PR region, due to the reverse flow induced by the near-wall region of the PR,

resulting in an upstream-moving boundary layer. For the short prism, PR and SR regions are

absent due to a lack of flow reattachment on the prism surfaces. Figures 8.3c and 8.3d show

contours of root-mean-squared streamwise fluctuations (u′rms) overlaid with the u = 0 streamline



Chapter 8. Destabilization of leading-edge shear-layer 179

0.0 0.1 0.2
v′rms/Ub

0.0

0.5

1.0

1.5

2.0
y
/d

x/l = 0.1

DR = 1, AR = 1

DR = 4, AR = 1

DR = 1, AR = 1.5

DR = 4, AR = 1.5

0.0 0.1 0.2
v′rms/Ub

0.0

0.5

1.0

1.5

2.0
x/l = 0.5

0.0 0.1 0.2
v′rms/Ub

0.0

0.5

1.0

1.5

2.0
x/l = 0.8

Figure 8.4: Profiles of root-mean-squared of the normal velocity fluctuations (v′rms) at different
streamwise locations shown in Figures 8.3c and 8.3d for (red) DR = 1 and (blue) DR = 4 prisms
at Re = 2.5× 103. Solid lines show profiles for AR = 1 prisms, while the × markers indicate the
profiles for AR = 1.5 prisms.

(in green) for both prisms. These figures indicate that the initial leading-edge shear layer exhibits

laminar characteristics. However, velocity fluctuations intensify with the onset of

Kelvin-Helmholtz Instability (KHI) vortex rollers and their subsequent interactions (Chapter 7),

marking the transition to turbulence (already discussed in Chapter 7). Regions of intense

fluctuations show high turbulence intensity (u′i) and maximum turbulence kinetic energy (u′iu
′
i).

For DR = 1, u′rms intensifies near the WR region and then gradually declines downstream. For

DR = 4, u′rms amplification is more pronounced near the PR region with another peak near the

WR region, coinciding with trailing-edge flow separation.

Figure 8.4 shows profiles of the root-mean-squared normal velocity fluctuations (v′rms) at

different streamwise locations immediately downstream of the leading edge for both prisms

(shown in Figures 8.3c and 8.3d), comparing the profiles for aspect-ratios AR = 1 and 1.5.

Streamwise locations are normalized by the prism length (l) to facilitate comparison between

prisms of different depth-ratios. This comparison reveals that wake oscillation intensity is

significantly higher for DR = 4 than DR = 1. Additionally, wake oscillation intensity reaches a

peak at x/l = 0.5 for DR = 4, corresponding to the location of leading-edge shear-layer

reattachment. This confirms that the wake strength is influenced by the prism depth-ratio, as flow
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Figure 8.5: Mean shear (τ) at leading-edge of (a) DR = 1 and (b) DR = 4 prisms with AR = 1
at Re = 2.5×103. Contours are overlaid with streamline of u = 0 (green) and critical streamlines
(black).

separation and reattachment vary across surfaces. Long prism shows stronger velocity

fluctuations (v′rms) compared to the short prism, further highlighting the role of depth-ratio in

enhancing wake irregularity. Similar conclusions are apparent from comparisons of prisms with

AR = 1.5, where the longer prism (DR = 4) displayed a stronger wake compared to DR = 1.

Figure 8.5 presents contours of the mean shear stress, defined as τ = µ
∂u
∂y . Results highlight

strong τ at the leading edge of both prisms, while intensity of τ rises with increasing depth-ratio,

leading to a greater overall shear stress. Additionally, a region of intense mean shear flow is

observed near the trailing edge for the longer prism (DR = 4), where the leading-edge shear layer

reattaches and separates again. The stronger mean shear stress associated with the higher

depth-ratio prism significantly influences the inception and development of hairpin-like vortices.

For example, Zhang et al. (2023) demonstrated that hairpin vortex formation is driven by the

background mean shear flow with regions of high shear stress forming the vortex head in

high-momentum zones, while low-momentum regions form vortex legs.

8.1.2 Onset of Kelvin-Helmholtz Instability

The onset of Kelvin-Helmholtz instability vortex roll-up was shown in Chapter 6 to depend on the

prism depth-ratio. For DR = 1, vortex tubes extend into the downstream wake region, whereas,

they appear over the prism surfaces for DR = 4. Similar vortex tubes are observed along side
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Figure 8.6: Iso-surfaces of streamwise vorticity, ω∗
x = ±5, at (a,b) Re = 2.5 × 103 and (c,d)

Re = 1×104 for (a,c) DR = 1 and (b,d) DR = 4 prisms.

surfaces of both prisms. Following this, streamwise vortex tubes undergo modulation in the

spanwise direction, locations of which align with the local maxima of mean shear stress

(Figure 8.5). Under the influence of strong mean shear flow, modulated vortex tubes are stretched

and roll-up into hairpin-like vortices, arranged in a staggered formation, which are shed

downstream. Figure 8.6 illustrates the pattern adopted by the streamwise vorticity (ωx),

highlighting the flow motion and development of streamwise vortices, which induce flow

entrainment due to high- and low-speed streaks (Jimenez, 1983). At high Reynolds numbers,

similar high- and low-speed streaks appear (see Figures 8.6c and 8.6d). Flow entrainment is

particularly evident near the leading edge of the long prism with streamwise vortices extending

into the wake region. Contrarily, streamwise vortices emerge well into the wake for DR = 1.
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Figure 8.7: Contours of span-wise vorticity, ω∗
z , for (a) DR = 1 and (b) DR = 4 at Reynolds

number of 2.5×103, superimposed with instantaneous streamlines and the isopleth of u = 0 (bold,
green line) at z/d = 0.

These observations suggest that flow entrainment is more pronounced near the leading edge for

the long prism compared to the short prism.

Instantaneous vortex shedding is closely examined near the leading edge of both prisms, in

Figure 8.7, which includes contours of spanwise vorticity (ω∗
z ) overlaid with instantaneous

streamlines and u = 0 isopleth at z/d = 0. In both cases, the generation of Kelvin-Helmholtz-like

vortices from the leading edge is notable. A zoomed-in sub-figure near the leading edge in

Figure 8.7 reveals an earlier initiation of Kelvin-Helmholtz instability for DR = 4 compared to

DR = 1, where the instability appears further downstream at x/d ≥ 1. For the former, streamlines

show flow entrainment near the prism top surface, characterized by a region of positive ω∗
z and an

upstream trajectory. This entrainment is less pronounced for DR = 1. For DR = 4, flow

entrainment from the primary recirculation bubble impinges on the top surface, leading to the

formation of two boundary layers: one moving upstream and the other downstream (Cimarelli

et al., 2018). Downstream flow structures predominantly align in the streamwise direction, as

shown in Figure 8.6b. Conversely, upstream-moving structures form a strong region of positive
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ω∗
z (see Figure 8.7), corresponding to spanwise-aligned flow structures reminiscent of vortex

tubes aligned in the spanwise direction. This region of positive ω∗
z may be the source of

undulations forming on the vortex tubes near the leading edge. Further investigation is presented

later in this chapter.

Onset of Kelvin-Helmholtz instability and subsequent formation of hairpin-like vortices are

further analyzed by tracking the downstream trajectory of maximum turbulent kinetic energy (kmax)

along the prisms mid-span (z/d = 0). Based on the dynamics described in prior studies (Moore

et al., 2019a,b), turbulent kinetic energy is expected to increase in amplitude as fluctuations grow

downstream of the leading edge. This implies that the trajectory of kmax could align with the

path of the leading-edge shear layer and the subsequent vortex shedding. Figure 8.8 shows the

downstream trajectory of kmax for both prisms. At Re = 2.5× 103, kmax grows rapidly for both

prisms, starting near zero at the leading edge, where flow separation occurs. For DR = 1 at Re =

2.5× 103, kmax reaches a maximum in the wake at x/d ≈ 2.8, after which it saturates and drops.

Increasing Reynolds number shifts this saturation point upstream, closer to the prism trailing edge.

At higher Reynolds numbers, a secondary peak in kmax appears in the wake, primarily due to the

wake interactions (see Figure 8.3c), resulting in increased momentum transport. Similar upstream

shifts in the onset of Kelvin-Helmholtz instability at higher Reynolds number have been observed

in previous studies, notably by Moore et al. (2019a) and Cimarelli et al. (2024).

For the long prism, a similar trend is observed, where kmax rapidly increasing from near zero

at the leading edge towards a maxima close to the shear-layer reattachment location on the top

surface. Shift in the peak of kmax is more pronounced for the long prism than the short prism,

indicating a more intense growth of turbulence intensities. Following the flow reattachment, kmax

decreases moving downstream. Near the leading edge, kmax is significantly higher for long prism

compared to the short prism, indicating greater turbulence intensity, consistent with the results

in Figures 8.3c and 8.3d. Saturation point of kmax has been linked in previous studies (Moore

et al., 2019a) to the onset of Kelvin-Helmholtz instability. This implies that the onset of Kelvin-

Helmholtz instability shifts upstream with increasing Reynolds numbers for wall-mounted prisms.
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Figure 8.8: Downstream trajectory of maximum turbulence kinetic energy (kmax) along the prism
mid-span (z/d =) for (a) DR = 1 and (b) DR = 4 prisms. Leading-edge of the prisms (shown in
grey) is located at x/d = 0.

At higher Reynolds numbers, a self-similarity trend is observed in kmax for both prisms, which is

more pronounced for the long prism with trends of kmax converging at Re = 5× 103. Although

this trend is not observed for the short prism within the current range of Reynolds numbers, it is

reasonable to hypothesize that extending Re beyond 1× 104 could yield a similar effect, based

on analogous behaviors observed in comparable geometries at higher Reynolds numbers (Moore

et al., 2019a,b). Self-similarity of kmax at higher Reynolds numbers suggests a Reynolds number

invariant behavior, indicating that turbulence intensities are primarily influenced by depth-ratio

(prism geometry) at high Re.

Vorticity in the flow is generated under the influence of non-uniform pressure gradient along

the prism length, while turbulent kinetic energy is generated by fluctuations in the presence of a

mean velocity gradient (Pope, 2001). Integrated turbulent kinetic energy downstream of the

leading edge reflects the cumulative amount at any given location, which can be used to

quantitatively track the growth of turbulence intensity (Moore et al., 2019a). Figure 8.9 presents

the integrated turbulent kinetic energy along the prism mid-span (z/d = 0) for both prisms, which

shows its rise downstream of the leading edge for both cases. This indicates a substantial

turbulence production. Growth rate of turbulent kinetic energy is more pronounced along the long
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Figure 8.9: Integrated turbulence kinetic energy along the prism mid-span (z/d =) for (a) DR = 1
and (b) DR = 4 prisms. Axial length is normalized by the prism length (l).

prism compared to the short prism, suggesting pronounced flow irregularity. Increased

unsteadiness near the leading edges is attributed to flow reattachment on surfaces of the long

prism, leading to a rise in turbulence intensity (Figure 8.8b). These results quantitatively indicate

that turbulence intensity is significantly higher for the long prism than short prism, highlighting

that depth-ratio strongly influences the overall flow unsteadiness.

8.1.3 Flow processes with typical frequencies

Inherent instabilities in the flow give rise to distinct frequencies associated with specific physical

flow phenomena. This section investigates flow periodicity and analyzes the flow processes

corresponding to these frequencies. Figure 8.10 presents the pre-multiplied power spectral

density of streamwise (Eu) velocity fluctuations near the leading edge at (0.5,1.3,0) for both

prisms. The results show that two dominant frequencies characterize the flow, corresponding to

large-scale vortex shedding and Kelvin-Helmholtz instability. Large-scale vortex shedding

frequency occurs at Stsh ≈ 0.17 for both prisms, while frequencies of Kelvin-Helmholtz

instability are Stkh ≈ 0.855 and 1.290 for DR = 1 and 4, respectively. Similar observations are

made at higher Reynolds numbers, where frequencies of large-scale vortex shedding remain
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Figure 8.10: Pre-multiplied power spectral density of streamwise (Eu) velocity fluctuations near
the leading-edge at (0.5,1.3,0) for (a) DR = 1 and (b) DR = 4.

constant for both prisms, while frequency associated with KHI increases. For larger depth-ratios,

frequency of KHI rises, indicating a stronger influence of KHI downstream of the leading edge as

was described in Chapter 7. A tertiary frequency, noted at St f b ≈ 0.59 for the long prism at

Re = 2.5×103, is attributed to the feedback frequency from the secondary recirculation region to

the primary recirculation region. Similar fractional harmonics (St f b), corresponding to the

feedback of impinging leading-edge shear layer, were observed previously for suspended

prisms (Zhang et al., 2023). However, such feedback frequencies have not been reported in the

literature for wall-mounted prisms. Therefore, flow mechanisms related to this frequency are

further explored here on.

Topological structures corresponding to large-scale vortex shedding and KHI frequencies are

next analyzed using Dynamic Mode Decomposition (DMD). Figure 8.11 presents contours of the

real part of DMD modes for the streamwise component, corresponding to the shear layer and KHI

for short and long prisms at Re = 2.5× 103. Figures 8.11a and 8.11c show structures associated

with the large-scale vortex shedding frequency, displaying alternating streamwise structures

arranged in a regular pattern. These structures originate near the location of shear-layer

reattachment for DR = 4 and in the wake for DR = 1. Since large-scale vortex shedding mainly
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Figure 8.11: Contours of the real part of DMD mode for streamwise component, corresponding
to (a,c) shear-layer and (b,d) Kelvin-Helmholtz instability for (a,b) DR = 1 and (c,d) DR = 4 prism
at Re = 2.5×103.

consists of hairpin-like vortices that shed from the breakdown of the leading-edge shear

layer (Zhang et al., 2023), structures in Figures 8.11a and 8.11c correspond to the onset of

hairpin-like vortex shedding in the wake. These structures are more pronounced for the long

rather than short prisms, indicating a more substantial growth of large-scale vortex shedding for

the former.

Figures 8.11b and 8.11d show structures associated with the KHI frequency. These structures

feature spanwise vortex tubes aligned in the streamwise direction, shedding from the leading-

edge shear layer. In both cases, structures initiate near the leading edge, with the onset of KHI

occurring closer to the leading edge for the long prism than for the short prism, consistent with

Figure 8.7. For the short prism, KHI structures decay rapidly into the wake and vanish downstream.

In contrast, KHI structures persist further downstream and interact with the wake for the long

prism. This interaction region is visible in Figure 8.11d for the long prism, where KHI structures

engage with the primary recirculation bubble and large-scale vortex shedding. Following this
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interaction, KHI structures destabilize and evolve into hairpin-like vortices that shed into the wake.

Similar interactions were quantified in Chapter 6, where KHI structures were shown to interact with

large-scale vortex shedding.

8.1.4 Mechanism of destabilization of leading-edge shear-layer

Before discussing the mechanism of leading-edge shear layer destabilization, it is helpful to briefly

review the main characteristics of separating and reattaching flow over wall-mounted prisms with

varying depth-ratios. For a cube (DR = 1), the flow is characterized by a shear layer that separates

at the leading edge and extends into the wake, as shown in Figure 8.3a. In this case, downstream

WR exhibits increased turbulence intensity and large-scale vortex shedding. For a long prism,

the flow separates at the leading edge and reattaches on the prism top surface, forming a PR, as

illustrated in Figure 8.3b, which features large unsteady fluctuations and spanwise vortex shedding.

Shear layer reattachment also generates a SR region beneath the PR, characterized by reverse flow

and an upstream-moving boundary layer. Destabilization of the leading-edge shear layer occurs

in the PR, leading to the formation of hairpin-like vortices that shed into the wake. Immediately

downstream of the leading-edge separation, flow instabilities lead to the formation of spanwise

structures, as shown in Figure 8.1b. Interactions between spanwise structures and the strong shear

flow (Figure 8.5b) results in a spanwise modulation of vortex structures. This modulation stretches

structures in the streamwise direction, forming hairpin-like and streamwise vortices, as observed

in Figure 8.6b. Two branches of turbulent structures emerge: one moves downstream as detached

fluctuations into the wake, while the other impinges on the wall, moving upstream toward the

leading edge and forming the secondary recirculation region.

Destabilization mechanism in long prisms lead to increased flow irregularity and modulation

of spanwise vortex structures. Results for the long prism are only considered to retain the focus in

this study. The main analysis is performed along the two critical streamlines identified in

Figure 8.5b. First critical streamline represents the recirculating flow region formed by the

shear-layer reattachment and it will be referred to as the “recirculating region”. Looking along
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z ) overlapped with critical streamline representing

Recirculating region, at Re = 2.5×103 for DR = 4 prism.

the curvilinear coordinate length (γ), defined by the mean velocity streamline (γ =
´

dγ where

dγ =
√

dx2 +dy2 +dz2), this path (γ) enables studying flow in PR and SR regions, and

interactions between the leading-edge shear layer and the SR region. The second critical

streamline, referred to as the “path following free shear-layer”, enables analysis of the flow along

the free shear-layer and its development towards the free flow.

Path following recirculation region

The critical streamline that represent the recirculating region is shown in Figure 8.12, overlaid

with contours of spanwise vorticity (ω∗
z ). For easier understanding of the flow dynamics, this

recirculating region is divided into three sub-regions: (1) the area between shear-layer separation

and reattachment (highlighted in green); (2) the impinging flow region and the branch of flow

moving upstream (in red); and (3) secondary recirculation (SR) region below the primary

recirculation (PR) region (in blue). Figure 8.13 shows trends of pressure and root-mean-squared

velocity fluctuations (u′rms, v′rms, w′
rms) along the recirculating region depicted in Figure 8.12.

Following flow separation at the leading edge, mean pressure decreases until it reaches the

primary vortex core in the PR region at γ ′ ≈ 0.3. Pressure then rises downstream, peaking at the

shear-layer reattachment location (γ ′ ≈ 0.5) on the prism top surface. This increase in pressure

indicates a significant adverse pressure gradient, contributing to the formation of the PR. Beyond

this point, pressure drops along the impingement region, moving upstream into the reverse
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Figure 8.13: Trends of (a) pressure and (b) root-mean-squared velocity fluctuations (u′rms, v′rms,
w′

rms) along the recirculating region for DR = 4 prism at Re = 2.5 × 103. γ ′ represents the
normalized curvilinear coordinate length.

boundary layer. Subsequently, mean pressure exhibits a favorable gradient, nearing the

free-stream pressure as the flow enters the SR. Here, pressure shows another adverse gradient as it

moving back towards the leading edge.

Figure 8.13b shows trends of the root-mean-squared velocity fluctuations (u′rms, v′rms, w′
rms).

Along the leading-edge shear layer (green symbols), velocity fluctuations increase due to the

amplification of instabilities and transition to turbulence (discussed in Chapter 6). Streamwise

velocity fluctuations are most prominent here, reaching their maximum near the primary vortex

core. Spanwise and normal fluctuations display similar intensities, with slightly larger spanwise

fluctuations near the primary vortex core. Following this, normal and streamwise velocity

fluctuations drop sharply until flow reattachment at γ ′ ≈ 0.5, while spanwise fluctuations continue

to increase. This results in maximized spanwise fluctuations near the shear-layer reattachment,

suggesting the presence of intense spanwise vortex structures in this area. This is evident by the

presence of spanwise KHI rollers in Figure 8.1b. In the impingement and reverse boundary layer

regions (red symbols), overall velocity fluctuations drop sharply. Along the impingement region

(0.55 ≤ γ ′ ≤ 0.75), normal velocity fluctuations become negligible, while streamwise and

spanwise fluctuations remain steady. This indicates the formation of intense streamwise and

spanwise structures, and the presence of spanwise sweeping of flow structures at impingement.

Finally, normal velocity fluctuations increase in the SR (blue symbols), while streamwise and

spanwise fluctuations rise sharply until reaching a local maximum near the secondary vortex core.
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Figure 8.14: Trends of (a) turbulence-mean-shear interaction (TMI) and (b) turbulence-turbulence
interaction (TTI) along the recirculating region. γ ′ represents the normalized curvilinear coordinate
length.

Beyond this point, streamwise fluctuations decrease rapidly, while spanwise and normal

fluctuations remain steady, closing the loop of the secondary recirculation region.

Pressure fluctuations (p′) are influenced by velocity fluctuations (u′, v′, and w′) in

incompressible flows (Pope, 2001). Poisson’s equation links fluctuating velocities with pressure

fluctuations. Two terms of Poisson equation, turbulence-mean-shear interaction (TMI) and

turbulence-turbulence interaction (TTI), are used to quantify the interactions between the mean

flow and turbulence, as well as among turbulent structures, which is essential for analyzing flow

irregularity and destabilizing mechanisms in the leading-edge shear layer. A Similar approach

was employed in Chapters 6 and 7 to analyze the flow dynamics and interactions in the wake.

Figure 8.14 illustrates the trends of TMI and TTI along the recirculating region. Along the

leading-edge shear layer, TMI in Figure 8.14a shows two prominent peaks of equal magnitude,

corresponding to the onset of KHI and the primary vortex core, respectively. Since TMI

represents the energy influx through mean flow modulation, the first peak at the onset of KHI

indicates that energy is injected into the flow by mean flow modulation due to the instability

(shown in Chapter 7). The second peak at the primary vortex core signifies that energy is injected

into the flow by amplified streamwise and normal velocity fluctuations (evident from

Figure 8.13b). Vorticity associated with the shear-layer alters the mean flow in this region,

resulting in enhanced momentum transport that was already discussed in Chapter 7. Beyond this,

TMI decreases towards the shear layer reattachment point, suggesting energy dissipation through
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flow reattachment (Mansour et al., 1988). Similar trends were noted previously in Chapter 7. In

the impingement region, TMI exhibits another peak, mainly due to spanwise sweeping of flow

structures and heightened spanwise velocity fluctuations (Kumahor and Tachie, 2023). Moving

upstream into the SR, TMI shows a local maximum near the secondary vortex core, then

decreases toward the leading edge, hinting at the mean flow modulation by the secondary vortex

core and consequent energy influx into the flow. The TTI, shown in Figure 8.14b, increases

steadily along the leading-edge shear layer, indicating strong interactions of leading-edge

shear-layer with downstream turbulent fluctuations. A peak near the primary vortex core suggests

that these interactions are most intense downstream of the core. TTI then rises again until the

reattachment location, where it sharply drops in the impingement region (symbols in red). This

sharp drop, due to the upstream-moving reverse boundary layer, reflects reduced fluctuations

along the reverse boundary layer (evident from Figure 8.13b). Finally, TTI rises again near the

secondary vortex core into the SR region, indicating that turbulence-turbulence interactions

contribute energy to the leading-edge shear layer through mean flow modulation near the

secondary vortex core, consistent with TMI trends (see Figure 8.14a).

To analyze energy transfer along the recirculating region, Figure 8.15 presents trends of

turbulence kinetic energy production (Pk), dissipation (εk) and convection (Ck) along this region.

Turbulence kinetic energy production (Pope, 2001) is defined as

Pk =−(u′iu
′
j −2ντSi j)

∂ui

∂x j
,

dissipation is defined as

εk = 2τSGS
i j Si j +2ντSi jSi j

and convection is defined as

Ck =
1
2

ui
∂u′iu

′
i

∂xi
.

As anticipated, Pk rises along the leading-edge shear layer, reaching a maximum at the point of

peak streamwise velocity fluctuations (see Figure 8.13b). Following this peak, Pk experiences a
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Figure 8.15: Trends of (a) turbulence kinetic energy production (Pk), (b) turbulent dissipation (εk)
and (c) convection (Ck) along the recirculating region. γ ′ represents the normalized curvilinear
coordinate length. Quantities are normalized by the free-stream velocity and prism width.

sharp drop and then exhibits steady production along the impingement region, consistent with

expected trends from velocity fluctuations and mean shear stress. In the impingement region,

mean shear stress (∂u
∂y ) decreases while streamwise and spanwise velocity fluctuations remain

relatively constant, resulting in lower Pk. Further, profiles of εk suggests that energy is dissipated

through flow impingement and the reverse boundary layer. Chiarini and Quadrio (2021) made

similar observations, where large values of dissipation occurs in the core of PR. Intuitively,

amplified dissipation in the reverse boundary layer confirms the larger degree of universality for

the dissipative phenomena near a wall (Mansour et al., 1988). A peak of Pk is observed in SR,

which is consistent with the amplified turbulence-turbulence interactions and velocity

fluctuations. This indicates that energy is produced within SR. The convection profile (Ck) along

SR shows a steady increase, suggesting that energy is transported upstream. Given the adverse

pressure gradient and amplified convection in SR, turbulent fluctuations are able to reach the

leading-edge shear-layer, thus completing the cycle.
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Figure 8.16a shows the pre-multiplied power spectral density of streamwise velocity

fluctuations (Eu) along the SR, in the detached reverse flow region at (0.5d,1.05d,0).

Figure 8.16a indicates a distinct frequency corresponding to the feedback frequency (St f b)

observed earlier. Higher frequency peak is evident at Stkh and sub-harmonics of St f b are noted,

however, the peak in premultiplied frequency spectrum at St f b ≈ 0.59 is most prominent. The

probability density function of the mean streamwise velocity along the SR region (Figure 8.16b)

reveals strong upstream advection characterized by a negative mean streamwise velocity. This

finding further supports the upstream convection of energy by flow structures at the feedback

frequency along the SR region. The long negative tail of the probability density function suggests

rare but strong reverse flow events in this region, which are associated with the upstream transfer

of energy generated in the SR. Since St f b is much lower than the frequency of KHI, flow

structures in the SR tend to cluster and amplify, as evidenced by the high probability of near-zero

mean streamwise velocity. These clusters then move upstream toward the leading edge,

contributing to the destabilization of the leading-edge shear layer. A vortex reconnection

phenomenon is also anticipated (Cimarelli et al., 2018), where streamwise vortices stretch in the

spanwise direction due to the feedback effect. This is consistent with the stronger spanwise

velocity fluctuations along the SR (Figure 8.13b), and the lower streamwise fluctuations. Finally,

Figure 8.17a shows contours of streamwise velocity fluctuations (u′), revealing feedback effects

near the SR. Here, a region of negative streamwise velocity fluctuations is evident in the SR. The

DMD mode corresponding to St f b is presented in Figure 8.17b, illustrating streamwise vortices

that signal feedback from the SR into the leading-edge shear layer.

Streamline following free shear-layer

The critical streamline representing the path following free shear-layer is shown in Figure 8.18.

Similar to the recirculating region, path following free shear-layer is divided into three

sub-regions: (1) the area following the leading-edge shear layer up to the flow reattachment on the

prism surface (highlighted in green), (2) the flow along the attached boundary layer (in red) and
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Figure 8.16: (a) Pre-multiplied power spectral density of streamwise velocity fluctuations (Eu) in
SR, at (x,y,z) = (0.5d,1.05d,0), and (b) probability density function of mean streamwise velocity
(u) along the secondary recirculation region.
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Figure 8.17: (a) Streamwise velocity fluctuation (u′) showing feedback near SR region; and (b)
Contours of the real part of DMD mode for streamwise component corresponding to feedback
frequency (St f b), for DR = 4 prism at Re = 2.5×103.

(3) flow development in the wake of DR = 4. Similar to the recirculating region, analyzing the

path following free shear-layer provides insights into the first branch of turbulent flow structures

emerging from the leading-edge shear layer and moving downstream into the wake.

Evolution of pressure and root-mean-squared velocity fluctuations (u′rms, v′rms, w′
rms) along the

path following free shear-layer are shown in Figure 8.19. Mean pressure along the shear-layer

path (shown in green) aligns with the corresponding section in the recirculating region. Initially,

pressure decreases up to the location of the primary vortex core, then increases due to the adverse
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the path following free shear-layer, at Re = 2.5×103 for DR = 4 prism.
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Figure 8.19: Trends of (a) pressure and (b) root-mean-squared velocity fluctuations (u′rms, v′rms,
w′

rms) along the path following free shear-layer for DR = 4 prism at Re = 2.5×103. γ ′ represents
the normalized curvilinear coordinate length.

pressure gradient until shear-layer reattachment on the prism surface. This adverse gradient is

sustained in the attached boundary-layer region (shown in red), followed by a slight reduction due

to a favorable pressure gradient extending to the trailing edge. This favorable gradient continues

into the WR (blue), where it reaches a local minimum before returning to its free stream value

downstream. Turbulence intensities in Figure 8.19b increase along the leading-edge shear layer,

following trends observed in the recirculating region. Instabilities amplify in this region, leading

to shear-layer roll-up and the formation of spanwise vortex structures. Near the reattachment

point, turbulence intensities drop sharply until normal velocity fluctuations become negligible in

the attached boundary layer. As the boundary layer develops downstream and detaches at the

trailing edge, turbulence intensities increase. In WR, turbulence fluctuations grow further due to

mixing and interactions between spanwise and normal flow structures in the recirculating flow.
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Figure 8.20: Trends of (a) turbulence-mean-shear interaction (TMI) and (b) turbulence-turbulence
interaction (TTI) along the path following free shear-layer. γ ′ represents the normalized curvilinear
coordinate length.

To further examine mean flow modulation and turbulent flow interactions, TMI and TTI along

the path following free shear-layer are shown in Figure 8.20. As anticipated, TMI increases to its

maximum near the secondary vortex core. Since the SR convects energy upstream into the leading-

edge shear layer, mean flow modulation occurs closer to the leading edge, as indicated by the TMI

peak. Following this peak, TMI drops sharply as the flow reattaches to the prism surface. Due to

the negligible velocity fluctuations in the attached boundary-layer region (shown in red), mean flow

modulation is also minimal until the flow separates again at the trailing edge. A local maximum

is observed right at the trailing-edge separation point, decreasing significantly into the WR and

downstream. WR is primarily characterized by spanwise and normal flow variations (Kumahor

and Tachie, 2023), which is evident from the profiles in Figure 8.19b. Thus, mean flow modulation

is minimal here, as turbulence intensities are largely driven by the mixing of spanwise and normal

flow structures (Chiarini and Quadrio, 2021). As expected, TTI (in Figure 8.20b) rises along the

shear layer, reaching its peak, and then decreasing again upon flow reattachment to the prism

surface. Turbulent interactions are minimal along the attached boundary layer and increase again

in the WR. Due to the mixing and interaction of flow structures along WR, turbulence-turbulence

interactions intensify, promoting the growth of turbulence intensities in this area.
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Figure 8.21: Trends of (a) turbulence kinetic energy production (Pk), (b) turbulent dissipation
(εk) and (c) convection (Ck) along the recirculating region for (□) Re = 5× 103 and (◦) 1× 104.
γ ′ represents the normalized curvilinear coordinate length. Pk and Ck are normalized by the free-
stream velocity and prism width.
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Figure 8.22: Probability density function of mean streamwise velocity (u) along the secondary
recirculation region for (a) Re = 5 × 103 and (b) 1 × 104. Dashed line represents the mean
streamwise velocity.
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8.1.5 High Reynolds number flow

Destabilization mechanism described above persists at higher Reynolds numbers,which is

apparent from the results at Re = 5× 103 and Re = 1× 104. Figure 8.21 shows the trends of Pk

and Ck along the recirculating region at Re = 5× 103 and Re = 1× 104, which align with those

observed at Re = 2.5× 103. Specifically, Pk is most pronounced along the leading-edge shear

layer and sharply decreases after the shear-layer reattachment, where energy dissipates (evident

from Figure 8.21b) and turbulence intensities drop notably in the impingement region.

Additionally, Pk exhibits a secondary peak near the location of the secondary vortex core,

signifying energy production by the secondary recirculation region. The energy convection trends

match the production patterns, showing that energy is carried upstream by flow structures. The

probability density function of mean streamwise velocity (u) in the SR for Re = 5 × 103 and

Re = 1 × 104 is presented in Figure 8.22. These trends are consistent with those observed at

Re = 2.5× 103, indicating rare yet intense upstream convection events of flow structures. Such

events amplify energy within the SR region and are expected to cluster and propagate upstream

toward the leading edge, contributing to destabilization of the leading-edge shear layer.

8.2 Summary

Destabilization mechanism of leading-edge shear-layer and the onset of Kelvin-Helmholtz

instability were evaluated at high Reynolds numbers (Re = 2.5× 103, 5× 103, and 1× 104) for

the cases of AR = 0.25 − 1.5 and DR = 1 − 4. Wake unsteadiness enhanced with increasing

depth-ratio, and KHI was noted for all cases, forming finite spanwise vortex rollers. Moreover,

depth-ratio influenced the intensity of mean-shear experienced by the downstream flow,

significantly impacting the inception and evolution of hairpin-like vortices in the wake. The onset

of KHI closer to the leading-edge for long prisms (DR ≥ 3) resulted in the shear-layer roll-up and

spanwise elongated vortex structures appearing on the prisms surfaces. At higher Reynolds

numbers, the onset of KHI shifted upstream and closer to the leading-edge, maximizing
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turbulence kinetic energy and the accumulation of energy, leading to enhanced flow irregularity

for long prisms. Furthermore, destabilization of the leading-edge shear-layer was investigated

quantitatively by focusing on the recirculating region and the path following free shear-layer. The

results highlighted the crucial role of secondary recirculation regions in modulating flow

structures and facilitated upstream convection of energy, which in turn destabilized the

leading-edge shear-layer. Flow structures in SR were clustered due to vortex reconnection, and

thus amplified. A feedback mechanism was noted, where the clustered and energized structures

moved upstream towards the leading-edge, transferring energy into the leading-edge shear-layer

and resulting in its destabilization. Turbulence kinetic energy production and convection

distributions revealed that the destabilization process was closely related to energy production in

both primary and secondary recirculation zones. Here, energy was produced by the secondary

recirculation and convected upstream, driving further instability. Probability density functions

revealed the presence of rare and intense upstream convection events, which amplified turbulence

and facilitated the destabilization process, regardless of Reynolds number. Thus, this study

quantified the impact of secondary vortex interactions, feedback mechanism, and vortex

reconnection phenomena in enhancing turbulence intensities, which ultimately led to the

shear-layer destabilization and flow separation.
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Chapter 9

CONCLUSIONS

This dissertation identified and characterized the mechanisms that govern flow transitions and

vortex interactions around wall-mounted prisms. In this study, a total of 310 three-dimensional,

high-fidelity numerical simulations were conducted to investigate the wake dynamics and vortex

interactions. These simulations were performed using OpenFOAM CFD toolbox. Simulations

varied across a range of depth-ratios, aspect-ratios and Reynolds numbers, providing a

comprehensive dataset to analyze and understand the wake dynamics of wall-mounted bluff

bodies. The main objective of this study was to advance the community’s understanding of wake

evolution and dynamics using numerical simulations of wakes. Specifically, the focus was on the

influence of depth-ratio (DR) on vortex dynamics and wake interactions in finite prisms. The

dissertation addressed four key research areas: (A) Classification of wake topology as a

multivariate function of depth-ratio and Reynolds number; (B) Characterization of interactions

between secondary vortex structures and leading-edge shear-layer roll-up; (C) Investigation of the

role of depth-ratio in interactions between Kelvin-Helmholtz instability (KHI) and hairpin-like

vortices; and (D) Identification of the mechanism of destabilization of the leading-edge

shear-layer at moderate Reynolds numbers.

Wake analyses across a range of Reynolds numbers and depth-ratios revealed that the

threshold Reynolds number for unsteady wake transition increased with larger depth-ratios. For
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small depth-ratio prisms (DR = 0.016 and 0.1), the wake exhibited unsteady behavior. At

DR = 0.016, the wake featured asymmetrically arranged hairpin-like vortex shedding, whereas

for DR = 0.1, the hairpin-like structures became symmetrically organized, indicating that flow

symmetry was restored with increasing depth-ratio. The mean wake features an arch-type

structure forming due to shear-layer roll-up behind the prism. A clear evolution was observed in

the wake characteristics. Symmetric to asymmetric transitions occurred with increasing Reynolds

number. Wake topology was classified into three regimes with wake evolutions governed by both

depth-ratio and Reynolds number: steady, asymmetric, and symmetric. For DR ≥ 0.3, the wake

was steady, with a dominant downwash flow replacing the previously strong upwash flow

observed in smaller depth-ratio prisms. For prisms with DR ≥ 0.3, the flow separated at the prism

leading edge, followed by shear-layer reattachment along the side and top surfaces, producing a

steady wake. Large depth-ratio prisms exhibited intensified downwash flow near the trailing edge,

entraining the flow into the wake. At low Reynolds numbers, unsteady wake evolution was driven

by the amplified downwash flow as depth-ratio increased, emphasizing the multivariate

dependence of wake topology on depth-ratio and Reynolds number.

A unique asymmetric wake pattern emerged at lower depth-ratios starting at Reynolds number

of 2.5 × 102. This pattern evolved into a symmetric wake with increasing depth-ratio. The

asymmetric wake developed due to alternate shear-layer peel-off from either side of the prism,

driven by the out-of-phase shedding of tip vortices at a lower Strouhal number (Stsh/2). This

shedding interacted with the detaching side shear layers, resulting in a momentum imbalance,

where the side that exhibited a stronger shear-layer (larger circulation) tilted the separating

hairpin vortex on that side. A phase difference of π was observed, indicating alternate tip-vortex

shedding. In turn, it generated secondary vortex structures fueled by excess vorticity from

detaching side shear layers. With increasing depth-ratio, simultaneous shedding of tip vortices

restored the symmetric wake pattern. Dynamic Mode Decomposition (DMD) analysis identified

two key frequencies including, dominant frequency associated with the shedding of hairpin-like

structures and the sub-harmonic frequency (Stsh/2) responsible for distorting heads of the
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hairpin-like vortices. Results showed that secondary vortex structures and wake asymmetry

primarily developed at small depth-ratios with increasing Reynolds number. At higher Reynolds

numbers and depth-ratios, interaction of shed structures with detaching shear layers resulted in

near-wake incoherence and the presence of multiple sub-harmonic and harmonic frequencies.

Further, stronger interactions between secondary vortex structures and separating shear layers

caused a more disorganized distribution of downstream wake structures.

This study also examined the influence of depth-ratio on interactions between KHI and

large-scale vortex shedding at moderate Reynolds numbers (1× 103 − 2.5× 103). The findings

revealed the presence of distinct KHI rollers originating from the leading-edge shear layer,

intensity and frequency of which increased for higher depth-ratios. Increasing depth-ratio

amplified vortex shedding, particularly the high-frequency KHI rollers in the wake. Larger

depth-ratio prisms (DR ≥ 3) exhibited pronounced interactions between KHI rollers and coherent

wake structures, resulting in a more intricate wake system. This was evidenced by an increased

number of KHI rollers and intense spanwise vortical motion. For larger depth-ratio prisms, a

flapping motion of the shear-layer led to an oscillating reattachment point on the prism surfaces.

The top-surface shear layer was quantified to be the primary source of pressure fluctuations,

driven by interactions between KHI rollers and coherent wake structures. Enhanced pressure

fluctuations amplified velocity fluctuations, further increasing the momentum transport and

contributing to a more complex wake topology.

This study further investigated the mechanism of turbulence transition for increasing

depth-ratio. The role of depth-ratio in amplifying wake irregularity was highlighted, which

facilitated the onset of turbulence. Increasing depth-ratio resulted in significantly higher

turbulence kinetic energy, with an increase of ≈ 90% near the leading edge. Heightened

turbulence kinetic energy was accompanied by the emergence of irregular, unsteady vortex

shedding. The unsteady shear layer exhibited flapping-like motion, driven by interactions between

KHI and large-scale vortex shedding. These interactions enhanced the momentum transport,

resulting in increased turbulence intensity and mixing, which accelerated the wake transition
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process. For prisms with larger depth-ratios, KHI-induced vortices interacted more frequently

with large-scale wake structures, intensifying flow fluctuations and producing irregular wake

patterns. These intensified interactions modified the frequency and coherence of vortex shedding,

revealing a complex coupling mechanism with KHI-driven instabilities amplifying interactions

between the shear layer and large-scale wake dynamics. This mechanism was identified as a key

driver of the transition to turbulence, marking a shift from regular to irregular wake behaviors.

Mechanisms of the leading-edge shear layer destabilization and the onset of KHI were

evaluated for high Reynolds numbers (2.5× 103 − 1× 104). The results revealed key changes in

the behavior of long prisms at higher Reynolds numbers, where the onset of KHI occurred closer

to the leading edge of the prism, particularly for prisms with DR ≥ 3. This shift resulted in

maximization of turbulence kinetic energy and an increase in flow irregularity, as the

accumulation of energy intensified. Distributions of turbulence kinetic energy production and

convection indicated that the destabilization process was closely linked to energy production in

both primary and secondary recirculation regions. Destabilization of the leading-edge shear layer

was primarily driven by the upstream convection of energy from the secondary recirculation

region. In this region, flow structures were clustered due to a vortex reconnection phenomenon,

which amplified the flow energy. The energy was then transferred to the leading-edge shear layer

through a feedback mechanism, triggering its destabilization, which further drove wake

instability.
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Chapter 10

FUTURE WORK

The key findings from this thesis have provided substantial insight into the wake dynamics of

wall-mounted prisms across a range of Reynolds numbers and geometrical parameters. Through

Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES), this research has

uncovered the multivariate interactions between depth-ratio, Reynolds number, and flow

structures like Kelvin-Helmholtz instabilities and hairpin-like vortices. Notably, the investigation

has shown the critical role of depth-ratio in determining the wake dynamics behind wall-mounted

prisms. However, while this research has deepened understanding of wake behavior under

specific conditions, notable gaps remain. For instance, the precise influence of other geometrical

parameters, such as variations in the free-end shape and surface roughness, were not fully

explored. Similarly, the wake dynamics at high Reynolds numbers, which are relevant to many

practical applications, have yet to be investigated in detail. Moreover, the role of wall effects,

secondary flows, and instabilities beyond the range studied here may provide additional insights

into the wake formation mechanisms.

This chapter outlines several potential avenues for future research, aiming to address these gaps

and expand upon the findings presented in this thesis. These suggestions are intended to guide

future investigations into the wake dynamics of wall-mounted prisms, with the goal of enhancing
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our understanding of the flow physics and improving the predictive capabilities of wake models.

The avenues for future work are as follows:

1. Higher Reynolds Number Investigations: While this thesis focused on Reynolds numbers up

to 1× 104, future work could extend the analysis to higher Reynolds numbers, especially in the

turbulent regime (e.g., Re> 1×104). This could provide insight into more complex turbulent wake

patterns and the role of depth-ratio in fully developed turbulence.

2. Investigation of Free-End Effects: The free-end flow effects on wake dynamics were briefly

touched on in this thesis, but a more detailed investigation of free-end vortices at higher Reynolds

numbers would shed light on the role of end conditions and finite geometry on flow behavior.

This could include investigating the variations in free-end surface geometry and boundary-layer

characteristics.

3. Unsteady Flow and Active Control: Future studies could focus on actively controlling the

unsteady wake patterns, such as using oscillating control surfaces or surface actuators, to mitigate

the wake irregularity and enhance aerodynamic performance. This is particularly relevant for

engineering applications like drag reduction and noise control in bluff body designs. Previous

work by (Rastan et al., 2019) has demonstrated the effectiveness of active flow control in reducing

wake-induced drag and noise.

4. Data-Driven Modeling and Machine Learning: Leveraging machine learning and data-driven

approaches could be an effective way to model and predict wake transitions, especially for complex

interactions between Kelvin-Helmholtz instability and large-scale vortex shedding. Data-driven

reduced-order models could help in developing efficient predictive tools for flow dynamics in real-

time applications. Further, employing novel methods such as Fourier-Averaged Navier-Stokes

(FANS) (Freeman et al., 2024) or deep learning-based flow prediction (Ling et al., 2016) could

provide valuable insights into the wake dynamics of wall-mounted prisms.
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